Mostrar mensagens com a etiqueta Magnetita. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Magnetita. Mostrar todas as mensagens

Metais que colorem as gemas e seu magnetismo

Os metais que colorem as gemas e a relação de magnetismo
(The magnetic metals that color gems).
magnetismo e cores das pedras preciosas
Esta página apresenta um tour detalhado dos 8 metais de transição, que dão cor às gemas.
Esses metais existem como íons (átomos carregados), especificamente como cátions (íons com carga + positiva), que são dissolvidos na química da gema, e dois ou mais desses metais podem às vezes ser dispersos em uma única gema. Nas gemas alocromáticas, os metais existem como impurezas, mas nas gemas idiocromáticas, os íons metálicos fazem parte da química inerente à gema.

Os metais que colorem as gemas são de tudo influências do magnetismo e paramagnetismo das gemas.

Os vários graus de atração magnética causados ​​por esses metais dependem de suas concentrações e estados de valência.

Quando vemos gemas naturais respondendo fortemente a um ímã de neodímio, na maioria das vezes estamos detectando íons de ferro ou, ocasionalmente, íons de manganês.

Causas da cor nas pedras preciosas
Quando impurezas são adicionadas a gemas incolores, cores brilhantes são frequentemente produzidas. Quando o cromo é adicionado ao corindo incolor, nasce um rubi vermelho, e uma esmeralda verde surge quando o cromo é adicionado ao berilo incolor. As cores distintas de muitas pedras preciosas vêm da presença de metais de transição como impurezas em uma rede cristalina transparente. Isso pode ser devido ao chamado campo de cristal ou, alternativamente, um efeito de campo de ligante. Nesse efeito de campo cristalino ou campo ligante, o campo exercido pelo cristal hospedeiro sobre a impureza hospedeira fixa os níveis de energia desta última como um absorvedor de fótons. Dito de outra forma, a ligação química entre o cristal hospedeiro e a impureza convidada sempre envolve a doação de elétrons do cristal hospedeiro para níveis de energia vazios na impureza metálica, ligando o metal ao cristal.

Principais metais que dão cor às pedras preciosas
metais que dão cor às pedras preciosas
Ferro maciço, Manganês sólido e Cromo sólido.

Metais de transição encontrados nas gemas:
1) principalmente ferro;
2) ocasionalmente manganês;
3 e 4) raramente cromo e vanádio;
5) cobalto apenas no raro Espenélio de Cobalto;
6 e 7) cobre e níquel apenas em algumas gemas translúcidas e opacas; e
8) nunca titânio.

Os íons metálicos dentro das gemas não existem como átomos independentes, mas se ligam a outros átomos dentro das gemas, principalmente átomos de oxigênio, para formar vários óxidos, como óxido de ferro (II) (FeO contendo íons Fe2+) e óxido de ferro (III) (Fe2O3) contendo íons Fe3+). Os óxidos metálicos que atuam como corantes tendem a se distribuir uniformemente em gemas lapidadas transparentes e translúcidas.

FERRO
O Ferro (Fe) é um dos elementos mais comuns na crosta terrestre, e é o metal de transição mais comum que causa cor nas pedras preciosas. Como um metal sólido, o ferro está em um estado fundamental não iônico e é ferromagnético (intensamente magnético). Átomos de ferro (íons ferrosos Fe2+ ou íons férricos Fe3+) dentro de óxidos que estão dispersos por uma gema geralmente causam cor. Esses íons de ferro não são ferromagnéticos, mas são fortemente paramagnéticos. Os íons Fe2+ são mais paramagnéticos que os íons Fe3+.
Estimamos que um ímã de Neodímio N52 pode detectar ferro em gemas em concentrações tão baixas quanto 0,1% de óxido de ferro (II) (FeO) por peso.

Os íons de ferro dispersos dentro dos óxidos criam a cor vermelha do corpo em gemas como na Granada almandina, a cor azul como no Berilo água-marinha e a cor verde como visto no Peridoto.

Os íons de ferro envolvidos nos processos de transferência de carga são responsáveis ​​pela cor azul na Iolita, cor verde como se vê na Turmalina "Verdelita" verde e cor marrom, ou como na Turmalina Dravita. O ferro também induz cores amarelas e pretas em outras gemas.


MANGANÊS
Manganês (Mn) é um metal de transição bastante comum em pedras preciosas. Como um metal puro em seu estado fundamental, é muito menos magnético que o ferro puro. No entanto, os íons de manganês (Mn2+) em gemas têm altas suscetibilidades magnéticas e concentrações de óxido de manganês (MnO) tão baixas quanto aproximadamente 0,13% são detectáveis. Devido a uma alta concentração de Mn2+ (até 40% de MnO), a Granada Espessartita laranja é a granada mais fortemente magnética. Granada Almandina colorida por ferro (Fe2+) e Granada Andradite colorida por ferro (Fe3+) estão empatadas em segundo lugar depois de Espessartita.

Os íons de manganês II (Mn2+) também são responsáveis ​​pela cor vermelha e rosa do corpo de muitas gemas, como a Rodocrosita (principalmente translúcida a opaca), que às vezes é ainda mais magnética que a Granada Espessartita. Os íons de manganês III (Mn3+) criam cor em concentrações muito mais baixas do que Mn2+, resultando em gemas fracamente magnéticas ou diamagnéticas. O Mn3+ cria a cor vermelha na Turmalina Rubelita, que geralmente é fracamente magnética, e a cor rosa na Kunzita (espodumena rosa), que é diamagnética. Uma forma de óxido de manganês preto chamada Psilomelane é fortemente magnética devido ao Mn4+, e às vezes é moldada em cabochões opacos decorativos.

Íons Crípticos:
Os íons de ferro e manganês podem ser "crípticos”.
Usamos o termo "críptico" para descrever íons metálicos dispersos dentro de uma gema que não são visíveis como cor, embora sejam detectáveis ​​com um ímã (ou com um espectrômetro, ou mesmo com fluorescência UV). Os íons de manganês no estado de valência de Mn2+ e os íons de ferro como Fe3+ são cromóforos fracos em comparação com a maioria dos outros íons de metais de transição. Em algumas gemas, esses íons Mn2+ e Fe3+ podem não produzir nenhuma cor visível, exceto quando em altas concentrações. A maior parte ou toda a cor em uma gema contendo concentrações relativamente baixas de Fe3+ e Mn2+ pode ser devida a outros íons metálicos dentro da gema e/ou a processos de transferência de carga envolvendo Mn2+ ou Fe3+.

Um metal, várias cores:
Um único tipo de metal pode causar cores diferentes em diferentes gemas. Os íons de manganês causam a cor laranja na granada Spessartine, vermelho na Turmalina Rubelita, preto na Psilomelana e, em casos raros, verde na Andaluzita.

Essa notável variação é resultado de:
1) diferentes estados de valência dos íons metálicos
2) diferenças na geometria das moléculas que contêm os íons metálicos e
3) diferentes átomos que envolvem os íons metálicos.
Por exemplo, os estados de valência dos íons de manganês (Mn2+, Mn3+, Mn4+) podem variar entre as espécies de gemas. As formas dos sítios moleculares (octaédricos, tetraédricos, cúbicos distorcidos) ocupados por esses íons metálicos também podem variar de espécie para espécie. E os tipos de átomos vizinhos que interagem com os íons metálicos podem variar.


CROMO
O cromo (Cr) é o segundo cromóforo metálico mais comum encontrado nas gemas depois do ferro, causando as cores vermelha e verde. O cromo é a razão pela qual os rubis são vermelhos brilhantes e algumas esmeraldas são ricas em verde. O cromo também é a principal causa de fluorescência UV (rosa ou vermelha) em pedras preciosas. Os íons de cromo (principalmente Cr3+) existem dentro de óxidos de cromo (Cr2O3) em pedras preciosas. Quando aplicamos um ímã N52 ao pó de óxido de cromo (III), as partículas são captadas pelo ímã.

Mesmo assim, os óxidos de cromo são apenas 25% tão magnéticos quanto os óxidos de ferro, e o óxido de cromo em pedras preciosas geralmente não é detectável magneticamente, mesmo com flutuação. Isso ocorre principalmente porque o cromo também é um agente corante forte, muito mais forte que o ferro. A concentração de cromo necessária para causar cor pode, em alguns casos, ser quase 100 vezes menor do que a concentração necessária para o ferro causar cor. Portanto, o cromo é geralmente encontrado em concentrações muito baixas. A pequena quantidade de cromo dentro da maioria das gemas vermelhas e verdes é indetectável ou apenas detectável com um ímã.

Gemas naturais que são magnéticas e coloridas principalmente por cromo devem conter adicionalmente impurezas de ocorrência natural de íons de ferro ou manganês que são crípticos, um termo que se usa quando a concentração de ferro ou manganês é suficiente para causar atração magnética, mas o ferro ou manganês não contribuem em nada para a cor. No entanto, o ferro críptico pode modificar o tom de uma gema para um tom mais escuro.

Os íons de ferro crípticos podem ser responsáveis ​​pela maior parte ou por toda a atração magnética observada em gemas verdes coloridas principalmente por cromo, como Diopsídio de cromo, granada demantóide de cromo e algumas esmeraldas (inertes a moderadamente magnéticas). A calcedônia cromada (colorida de verde por vestígios de óxido de cromo) normalmente não contém ferro detectável e geralmente é inerte (diamagnética).

Gemas artificiais, como esmeralda sintética, rubi sintético e espinélio vermelho sintético, são algumas das poucas gemas facetadas transparentes que contêm cromo suficiente para serem definitivamente detectadas com um ímã (um mínimo estimado de 0,4% de óxido de cromo em peso). A maioria dessas gemas são fracamente magnéticas, no limite inferior de detectabilidade, mas algumas esmeraldas sintéticas e esmeraldas naturais com alto teor de cromo podem ser fortemente magnéticas devido ao cromo.

Entre os minerais de gemas naturais coloridos por cromo, esmeraldas, rubis e alguns espinélios vermelhos com forte saturação de cor podem conter cromo suficiente (> 0,4%) para contribuir parcialmente para as respostas magnéticas fracas ou moderadas causadas por uma combinação de ferro e cromo. O conteúdo de cromo em algumas granadas, especialmente o piropo de cromo, também pode contribuir de forma pequena para a suscetibilidade magnética total. A Calcedônia Cromada Verde e, ocasionalmente, a Turmalina Cromada podem mostrar uma fraca atração magnética que pode ser devida inteiramente ao cromo e ao vanádio.

Pequenos cristais verdes de Granada Uvarovita idiocromática (uma granada de cromo opaca) podem conter 10 a 100 vezes mais cromo do que a esmeralda. Os cristais de granada Uvarovita e os cristais de cromo-dravita turmalina são os únicos cristais de gemas naturais que possuem alta suscetibilidade magnética devido ao cromo. Cristais de drusa de Uvarovite mostram uma resposta Pick-up a um ímã N52, e cristais de Uvarovita acima de 1 quilate mostram uma resposta de arrasto.

Às vezes, o cromo é encontrado como um agente corante secundário em gemas que são coloridas principalmente por um metal diferente. Este cromo também pode estar presente sem contribuir para a cor. Por exemplo, a Safira azul geralmente contém um traço de cromo que não é detectável como cor ou magnetismo, mas que causa fluorescência vermelha ou rosa sob luz ultravioleta de onda longa.

Em outros casos raros, o cromo está presente em gemas azuis. A cor azul-esverdeada da Aquaprase Chalcedony (diamagnética) é devida ao cromo em combinação com o níquel, e a cor azul-esverdeada da Chrome Kyanite (cianita cromada) (diamagnética a fracamente magnética) é devida ao cromo em combinação com ferro e titânio. Ambas as gemas aparecem vermelhas sob um filtro Chelsea devido ao cromo.


VANÁDIO
Vanádio (V) é geralmente emparelhado com cromo em gemas verdes alocromáticas. Ele tem a mesma suscetibilidade magnética do cromo, pode criar exatamente as mesmas cores verdes que o cromo e geralmente é o principal componente do par. A cor da gema pode variar de verde escuro a verde claro, dependendo da concentração de V.

O vanádio pode ser a principal causa da cor em muitas gemas verdes, como a esmeralda e a Granada Tsavorita. Várias gemas verdes que têm a palavra "cromo" no nome comercial são, na verdade, coloridas principalmente por vanádio. Exemplos incluem Chrome Sphene, Chrome Tourmaline e Chrome Kornerupine. Comparações de fluorescência UV, reações do filtro Chelsea e espectros de absorção indicam que o vanádio (V3+) em vez do cromo (Cr3+) é o agente de coloração dominante nessas gemas. Assim como o cromo, o vanádio não é detectável magneticamente em concentrações inferiores a aproximadamente 0,4% de óxido de vanádio.

As cores verdes associadas ao vanádio às vezes são levemente azuladas, resultando em cores verdes interessantes, como visto no verde "menta" na Granada Merelani, azul-esverdeado no Crisoberilo de vanádio e azul-esverdeado nas Esmeraldas sintéticas. Mas o cromo também pode criar uma cor azul esverdeada semelhante em pedras preciosas.

Tal como acontece com o cromo, os íons de vanádio são geralmente encontrados em baixas concentrações em gemas naturais, e as gemas coloridas principalmente por vanádio são geralmente diamagnéticas (inertes). Quando a atração magnética é encontrada, a maior parte ou toda a atração pode ser devida à presença de ferro críptico (Fe3+). A única pedra preciosa natural que encontramos que é fortemente magnética devido ao vanádio é um exemplo raro de Turmalina Vanádio-dravita transparente.

Entre as gemas artificiais, as esmeraldas de laboratório, como a esmeralda sintética colorida por vanádio podem mostrar uma fraca atração magnética devido a um nível modesto de vanádio. Também há forte suscetibilidade magnética em zircônia cúbica colorida por uma alta concentração de vanádio.

O vanádio também pode causar a cor azul em algumas gemas, como Cavansite, Tanzanite (Zoisite) e Kornerupine azul. Vestígios de vanádio trivalente (V3+) em Corindo também demonstraram contribuir com a cor azul. O vanádio tetravalente (V4+) é conhecido por ser responsável pela cor azul na Cavansite, mas os estados de valência e/ou mecanismos de cor envolvendo o vanádio na Zoisite azul e na Kornerupine azul não são bem compreendidos. A Tanzanita é diamagnética. As respostas magnéticas fracas encontradas em Kornerupine azul e as respostas magnéticas moderadas em Canvansite são quase certamente devidas a outros metais além do vanádio.


COBALTO
O cobalto (Co) não é um metal naturalmente abundante na crosta terrestre. Como o ferro e o níquel, é ferromagnético (intensamente magnético) em seu estado fundamental não iônico. Os íons de cobalto (Co2+) no óxido de cobalto (Co3O4) são igualmente paramagnéticos como os íons de ferro, mas raramente são encontrados em gemas naturais e, principalmente, apenas em quantidades vestigiais. O cobalto é um cromóforo ainda mais forte que o cromo, capaz de criar cores em concentrações extremamente baixas.

Na maioria das vezes, encontramos cobalto em gemas sintéticas e imitações, como espinélio azul sintético, quartzo azul sintético e vidro azul, todos diamagnéticos. O espinélio azul sintético cultivado em fluxo e o YAG azul sintético podem ser fracamente magnéticos devido a uma concentração mais alta de cobalto. Mas as concentrações de cobalto encontradas na maioria das gemas naturais e sintéticas são muito baixas para serem detectadas com um ímã.

A maioria dos espinélios azuis naturais são coloridos principalmente por ferro (Fe2+), mas o cobalto (Co2+) também contribui para a cor azul em vários graus. As respostas magnéticas que vemos nos espinélios azuis naturais geralmente se devem inteiramente ao ferro. O raro Espenélio de Cobalto tem baixo teor de ferro e contém os mais altos níveis de cobalto de qualquer pedra preciosa natural. Sua fraca atração magnética possivelmente se deve principalmente ao cobalto. Três outros exemplos de cobalto que contribuem para a cor em pedras preciosas naturais são a rara Esfalerita verde (diamagnética), rosa cobalto calcita (fracamente magnética devido ao ferro) e rosa Smithsonita (fracamente magnética devido ao manganês).

Às vezes, o cobalto é usado em tratamentos de gemas para realçar a cor azul. O vidro de cobalto está sendo usado para preencher rachaduras em Safira azul e incolor de baixo grau, criando uma cor azul vibrante em gemas de Safira que, de outra forma, não teriam qualidade de gema. O cobalto também é usado na difusão superficial da Safira azul e, recentemente, na difusão profunda do Espinélio azul. É improvável que qualquer um desses tratamentos contribua para a suscetibilidade magnética detectável.


COBRE
Cobre (Cu) é um forte corante que ocasionalmente é encontrado em gemas, criando cores principalmente azul e verde. O cobre é inerte (diamagnético) como um metal nativo, como pode ser demonstrado quando aplicamos um ímã a um encaixe de tubo de cobre doméstico. Também diamagnética é a pedra preciosa vermelha Cuprita, que é ela própria um óxido de cobre (Cu2O) colorido por íons monovalentes de cobre cuproso (Cu1+).

No entanto, o cobre também pode fazer com que as pedras preciosas sejam paramagnéticas. Com uma mudança no estado de valência, o Cu2+ divalente (cobre cúprico) em concentrações relativamente altas dentro de minerais idiocromáticos pode criar atração magnética significativa. Esses íons de cobre são encontrados em sais de cobre e silicatos de cobre, e não em óxidos de cobre. Como exemplo, os cristais de sulfato de cobre (II) cultivados em laboratório (CuSO4) mostram uma atração magnética fraca a moderada para um ímã N52.

As gemas idiocromáticas magnéticas coloridas pelo cobre incluem Turquesa azul (fosfato de cobre), Azurita azul (carbonato de cobre), Malaquita verde (carbonato de cobre), Crisocola verde-azulada (silicato de cobre), Dioptase verde-azulada (silicato de cobre) e Boleita azul (cloreto de chumbo-prata-cobre), todos os quais mostram atração magnética do cobre. Devido à alta concentração de cobre em sua química nativa, a gema facetada da Dioptase mostra uma resposta de arrasto a uma varinha magnética.

Em alguns casos, os íons de cobre (Cu2+) dentro do óxido de cobre (II) (CuO) também conferem cor azul a gemas alocromáticas , como a rara Turmalina Paraíba e a rara Vesuvianita azul, ambas gemas transparentes coloridas por vestígios de impurezas de cobre. Mas as baixas concentrações de cobre nessas gemas alocromáticas resultam em suscetibilidade magnética muito baixa para ser detectada com uma varinha magnética. Uma pedra preciosa opaca colorida por íons de cobre (Cu2+) dentro do óxido de cobre (II) é Larimar, uma variedade azul clara do mineral Pectolita da República Dominicana. Os íons de cobre nessas gemas cabochão alocromáticas estão novamente em concentrações muito baixas para serem detectadas. Larimar é inerte (diamagnética).

Um exemplo raro de inclusões de cobre metálico sólido ocorrendo simultaneamente com íons de cobre dispersos em uma única gema é mostrado abaixo. Esta gema de Calcedônia da Bolívia contém inclusões visíveis relativamente grandes de cobre nativo que atingem a superfície e têm um brilho metálico acobreado. A cor azul do corpo da gema é derivada de íons de cobre (Cu2+) em solução sólida, provavelmente dentro de inclusões microscópicas de Crisocola dispersas por toda a Calcedônia. As inclusões pretas não são identificadas. Como esperado, esta gema alocromática é diamagnética.
metais que dão cor às pedras preciosas


Cobre nativo e cobre iônico na Calcedônia.

NÍQUEL
Níquel(Ni) é ferromagnético (intensamente magnético) como um metal nativo e é encontrado em conjunto com ferro em meteoritos de ferro-níquel. Os íons de níquel (Ni2+) dispersos em pedras preciosas são apenas fracamente paramagnéticos em comparação com o ferro, mas quando em altas concentrações podem causar fortes respostas magnéticas. Conhecemos apenas 3 gemas naturais que são coloridas principalmente por níquel. Estes são Crisoprásio, Prase Opal e Gaspéita. Crisoprásio é um tipo de Quartzo Calcedônia, e Prase Opal é uma rara Opala colorida por inclusões submicroscópicas de Crisoprásio. A Gaspéita é um raro mineral gema idiocromático contendo níquel e ferro. Todas as 3 gemas são de cor verde e todas são extraídas predominantemente na Austrália. Essas gemas mostram atração magnética fraca a forte devido a concentrações variáveis ​​de níquel (mais ferro em Gaspeita).


TITÂNIO
Titânio (Ti) por si só não causa cor ou resposta magnética em gemas naturais. Como um metal sólido, o titânio é fracamente magnético. Mas o titânio aparece principalmente em pedras preciosas como íons (Ti4+), que são apenas pouco paramagnéticos e não detectáveis ​​com um ímã em pedras naturais. Mesmo o Rutilo incolor sintético, composto inteiramente de íons de titânio e oxigênio, é diamagnético ou muito fracamente magnético.

A interação entre pequenas quantidades de íons de titânio e íons de ferro pode criar cores fortes em várias gemas por meio de um processo chamado transferência de carga de intervalo. Este processo químico envolvendo transferências de carga de elétrons de Fe2+ para Ti4+, bem como de Fe2+ para Fe3+, resulta nos ricos tons azuis de Safira (inerte a moderadamente magnético) e Cianita azul (inerte). O processo de transferência de carga de Fe2+ para Ti4+ também induz a coloração marrom escura na Turmalina Dravita (inerte). A transferência de carga de manganês (Mn2+) para titânio (Ti4+) contribui para a cor amarela em algumas turmalinas (resposta inerte ao arrasto). Qualquer atração magnética em gemas contendo titânio se deve à presença de ferro e/ou manganês, não ao titânio ou processos de transferência de carga envolvendo titânio.


Metais de terras raras e urânio também dão cores a algumas gemas.
Clica AQUI para saber mais (brevemente).


Informações mais detalhadas sobre as causas complexas da cor nas gemas podem ser encontradas no artigo de 1980 da Scientific American do Dr. Kurt Nassau, The Causes of Color, the Gems and Gemology, artigo de 1987 do Dr. Kurt Nassau.
Uma atualização sobre cores em gemas por Fritsch e Rossman, e na página da web CalTech do Dr. George Rossman, The Colors of Minerals.

Fontes:

Encontrar ouro com um ímã

É possível encontrar ouro com um ímã?
Parece uma pergunta descabida, porém, dito isso, como explicar as seguintes fotos?
encontrar ouro com um ímã
encontrar ouro com um ímã
Sim, isso é ouro nativo e verdadeiro.

MAS OURO NÃO É MAGNÉTICO!
Sabemos que o ouro não é magnético, então como explicamos isso?

Na verdade, é muito simples.
Se você olhar para essas duas pepitas, notará pequenas manchas pretas e inclusões espalhadas por todo o ouro. Assim como a maioria das pepitas nativas que você encontra na natureza, existem outros minerais misturados ao ouro.

E com essas duas pepitas, esse mineral negro é a magnetita!
Portanto, não é o ouro que está sendo atraído pelo ímã, mas sim a pequena quantidade de magnetita que está presa.

Observe a matriz preta no ouro.
ouro e magnetita
Isso é magnetita, que na verdade faz com que essa pepita de ouro grude em um ímã.

Onde isso ocorre?
O ouro é comumente associado à magnetita e outros minerais à base de ferro, mas é extremamente raro vê-los entrelaçados para que as pepitas grudem em um ímã. No entanto, isso acontece e certas áreas têm mais probabilidade de ver isso do que outras.

Veja a associação do ouro à magnetita:

Nos E.U.A isso ocorrer no Arizona e na Califórnia. Aliás, essas pepitas na foto acima são do deserto de Mojave, no sul da Califórnia.
No Brasil há relatos muito raros de que isto acontece em algumas pepitas que foram encontradas no quadrilátero ferrífero em Minas Gerais.

Veja lista de minerais magnéticos:

Picareta com imã
picareta com imã de neodímio
Alguns detectores de ouro costumam anexar um superimã à cabeça de suas picaretas para atrair lixo de ferro, como pregos, tachas ou outros minerais magnéticos. Há algumas histórias de garimpeiros que limpavam seus ímãs no final do dia e encontravam pepitas como essas presas a eles.

Prospecção de ouro com ímã
Então, isso obviamente leva a refletir ... poderíamos usar ímãs para encontrar ouro?
Se você pegasse um ímã poderoso e o girasse, seria capaz de encontrar pepitas de ouro como essas?
Um super imã de pesca magnética seria suficiente para atrair ouro com estas matrizes ferríferas do fundo de um rio, por exemplo?

Suponho que a resposta seja SIM, no entanto, haverá uma série de desafios que tornarão este método de prospecção improdutivo.

ouro associado a magnetita
Primeiro, pepitas como essa são extremamente raras.
Duvido muito mais que 1 em cada 10.000 pepitas de ouro tenha matriz de magnetita suficiente para aderir a um ímã. Então você vai ter que passar por cima de literalmente milhares de pepitas de ouro "normais" antes de encontrar uma como esta.

O segundo desafio, será a abundância de magnetita que vocês encontrarão nessas áreas. Não tenho dúvidas de que nas áreas onde ocorrem essas pepitas magnéticas, provavelmente existem incontáveis ​​pedacinhos de magnetita solta. Cada peça vai atrair para o seu ímã, e não terá nenhum ouro preso a ela.

Em resumo, usar um ímã não é uma maneira viável de localizar pepitas de ouro.
A ocorrência desse “ouro magnético” é tão excepcionalmente rara que você nunca seria capaz de usar um ímã para localizá-los de forma bem-sucedida.


Fotos das pepitas e venda de pepitas de ouro nativo em:


Fontes:

Compreenda a geologia do ouro para procurar ouro

Para procurar e achar ouro você precisa entender a geologia do ouro, tipos de ouro, minerais associados e muito mais.
Compreenda a geologia do ouro para procurar ouro

Entender a geologia do ouro e indicadores naturais podem ajudá-lo a encontrar ouro.
Aqui estão as técnicas que compartilharemos com você para ajudá-lo nesta tarefa.

Nem todos os depósitos de ouro foram encontrados e explorados. Ainda há lugares que contêm ouro e que nunca foram descobertos ou estão esquecidos, apesar do fato de que os garimpeiros já fazem prospeção há centenas de anos. Se você conseguir encontrar um desses depósitos de ouro esquecidos, é provável que tenha encontrado algo excecional, porque foi a primeira pessoa a explorá-lo. Para encontrar qualquer um desses depósitos e suas características geológicas, você deve ser capaz de identificar os indicadores naturais que o levarão a encontrar os cobiçados flocos de ouro e pepitas.

Aprenda a geologia de sua área
É extremamente importante conhecer a geologia da área de exploração onde deseja procurar. Todos os lugares são diferentes e você precisa entender o que procurar na área específica de prospeção de ouro. Existem algumas coisas que são comuns a todas essas zonas de ouro, mas é extremamente importante entender exatamente onde e como o minério de ouro e seus depósitos aluviais vão parar aqui e ali, e sob quais condições geológicas.
Por vezes você poderá notar que em alguns locais improváveis ainda se encontram ouro, como na capital de São Paulo e mesmo no estado de São Paulo

Tipos de rochas produtoras de ouro
Ao pesquisar uma área de mineração, boas referências geológicas de ouro indicarão os tipos gerais de rocha na área associada às minas de ouro. Preste atenção aos tipos de rochas mais comuns e procure-os durante a prospeção. Eles podem ser um indicador de onde o ouro estará.
Nem sempre o ouro estará naquela forma bonitinha de uma linda pepita amarela, a a maioria do ouro que se extrai no mundo provém de rochas que contém de minério de ouro
gold ore rock
Será importante identificar as rochas locais associadas ao ouro. Se sua pesquisa nunca indicou que ouro é encontrado em um certo tipo de rocha, então você certamente não quer perder muito tempo pesquisando nesse tipo de área geológica. Isso é muito importante. Essa é a base do que se chama de prospeção mineral, ponto principal do garimpeiro.  Há que se conhecer também os tipos de depósitos de ouro que possam haver na sua região. Estude um mapa geológico da sua região. Prospeção ruim é perda de tempo.

Precisa haver um contato geológico entre a rocha e o ouro
Ser capaz de identificar pontos de contato geológicos é muito importante (e muitas vezes isto é completamente ignorado) pelos garimpeiros na localização de áreas onde ocorrerá ouro. Em outras palavras, esta é uma área onde dois tipos diferentes de rochas se encontram.

Sua pesquisa frequentemente indicará que os tipos de rocha serão os mais produtivos do ponto de vista da prospeção de ouro, mas o mais importante é que haja uma conexão. Frequentemente, os tipos de rocha são irrelevantes, pois o ouro é encontrado em todos os tipos de configurações geológicas diferentes. Mais importante ainda, ocorreu algum tipo de contato, frequentemente com pressão e temperaturas extremamente altas, que causaram a formação de rachaduras e o aumento de ouro à superfície.

A tendência geral da geologia em sua área é muito importante assim como a geografia do terreno em si. Procure pontos de contato onde diferentes tipos de rocha se encontram em um ângulo de 90 graus. Esses contatos resultaram em condições de alta pressão e alta temperatura que geralmente produziriam ouro. Você verá que muitas dessas áreas terão operações históricas, ainda há áreas que são áreas de contato "clássicas" muito ricas em ouro que nunca foram mineradas. Infelizmente, na maioria dos casos, o manto geológico é relativamente estável e essas condições de contato estão localizadas vários quilômetros abaixo da superfície. Mas é possível descobrir essas áreas, expostas ao ar livre e à erosão.

Geologia do ouro e mudanças de cor nas rochas
Outro indicador de um ponto de contato são as mudanças de cor no solo. Dependendo da quantidade de rocha exposta em uma área, você pode ou não ser capaz de identificar facilmente os pontos de contato onde os diferentes tipos de rocha se encontram. Você será capaz de ver onde a cor do chão muda. Uma vez que o solo é feito de rocha, mesmo uma pequena mudança na cor do solo pode ser um grande indicador de uma mancha de contato.

Algumas mudanças de cor podem ser muito óbvias, enquanto outras podem ser bastante sutis. Você não está procurando pequenas áreas com pequenas alterações aqui, você deseja tentar identificar linhas distintas de diferentes tipos de solo.

Essas zonas de contato podem ser geralmente curtas, mas às vezes se estendem em linha reta por vários quilômetros. Você também pode ter sucesso em encontrar novas áreas de mineração de ouro localizando minas em produção e, em seguida, notando uma mudança de cor se espalhando pela mina. Pode haver depósitos de ouro valiosos em uma operação vizinha que são uma extensão da mesma área de contato, no entanto, geralmente as mineradoras estão atentas a isto, às áreas circundantes.

Lembre-se de sempre estudar os diferentes tipos de geologia do ouro e você logo aprenderá que existem muitas áreas que ainda não foram descobertas.

Ouro de aluvião
O ouro de aluvião é o ouro que é encontrado nos rios. As grandes mineradoras de ouro pouco se interessam por garimpar ouro nestes locais, elas querem a fonte principal, elas querem o filão de ouro daquele ouro que foi ou vão parar aos rios. O ouro não dó só em flocos, pô ou pepitas. Também há várias variedades de ouro e é preciso conhecê-los.

Corante ferroso - Hematita - Magnetita - Areias Pretas
Compreenda a geologia do ouro para procurar ouro
Se você já fez alguma prospeção de ouro, provavelmente sabe que ouro e ferro têm uma relação muito forte. O ouro quase sempre está associado ao ferro. Quando você procura ouro e encontra areia preta entre o ouro fino, essa areia preta geralmente é composta de hematita e magnetita. Esses são dois tipos de óxido de ferro comuns a quase todas as áreas com ouro.

Isso é facilmente visto pela presença de um solo muito escuro. Muitas vezes são pretos ou avermelhados, mas podem até mostrar roxo, laranja, amarelo e uma variedade de cores diferentes. Esses solos escuros podem ser um indicador de alto teor de ferro, assim como muitos outros minerais associados ao ouro.
Nas minhas pesquisas eu uso sempre imagens de satélites do Google Earth, se você não usa ou não tem, baixe no seu computador ou telefone.

Quartzo, um verdadeiro indicador da geologia do ouro?
Compreenda a geologia do ouro para procurar ouro
A maioria das pessoas está familiarizada com a associação comum de ouro com quartzo. Veios de ouro frequentemente se formam na rocha de quartzo. Este é certamente o melhor indicador a procurar. No entanto, muitos garimpeiros estão prestando mais atenção ao quartzo do que ele realmente merece.

O quartzo é o segundo mineral mais abundante na superfície da Terra e pode ser encontrado em muitos lugares, no entanto, nem sempre a presença de quartzo em si é um bom indicador do potencial de ouro, pois terá também de haver a questão a geologia do local. Embora a presença de quartzo por si só não seja um bom indicador de onde o ouro pode ser encontrado, não há dúvida de que existem muitos locais de ouro onde ouro e quartzo têm uma forte correlação.

Geralmente considero o quartzo como um bom indicador, uma vez que se esta em uma zona conhecida de ouro e que existe uma forte relação entre o ouro e o quartzo nessa zona específica. Porquê isso ?

Quartzo, não necessariamente um bom amigo
Compreenda a geologia do ouro para procurar ouro
Existem zonas de ouro onde ouro e quartzo são comumente encontrados juntos. Muitas vezes, os grãos de ouro ou grandes flocos encontrados terão um formato muito grosso. Eles ainda terão quartzo preso nas ranhuras do espécime. Isso indica que eles foram erodidos diretamente do quartzo.

No entanto, existem muitas áreas nas quais você pode encontrar ouro que parece ter pouca ou nenhuma associação com o quartzo. Pode haver quartzo na área apenas porque é comum, mas o ouro pode estar completamente ausente. A prospeção é novamente uma boa maneira de determinar o valor do quartzo como um indicador em uma área. No inconsciente coletivo do garimpeiro, há ouro frequentemente nos veios de quartzo.

Outra coisa a se notar sobre o quartzo é que o tipo de quartzo em que o ouro é geralmente encontrado não é branco. Na maioria das vezes, apresentará manchas de ferro significativa. O quartzo terá uma aparência suja com manchas laranja ou marrons. O ouro pode ser encontrado no quartzo branco puro, mas isto é muito mais raro.

Xisto vertical será seu melhor indicador
O xisto é claramente um dos tipos de rocha aos quais o ouro é comumente associado. O xisto é uma rocha metamórfica que se forma sob condições de alta temperatura e pressão. Ele virá em finas folhas verticais. É uma rocha muito frágil e quebradiça porque aqueceu e esfriou muito rapidamente. O exemplo perfeito das condições da zona de contato do manto da superfície da Terra.

As zonas de ouro mais interessantes frequentemente apresentam intrusões verticais de xisto na forma de afloramentos ou intrusões em rochas ígneas. Essas são áreas de contato que definitivamente vale a pena explorar, se você as notar. Se, por outro lado, as folhas forem apresentadas horizontalmente, esta disposição será muito menos atrativa.
Compreenda a geologia do ouro para procurar ouro
No entanto a pirita e nódulos de pirita, o chamado "ouro de tolo" estará mais presente no xisto enganando que não conhece ouro nativo.

Aparências semelhantes às zonas de ouro circundantes
Uma das melhores maneiras de encontrar novos depósitos de ouro não descobertos é estudar a geologia de áreas conhecidas que contêm ouro e depois explorar as áreas circundantes. Identifique áreas com geologia semelhante.

Não estamos discutindo nenhum indicador específico aqui. Isso pode ser um ou mais indicadores naturais semelhantes a uma zona de ouro com um histórico conhecido de mineração de ouro profissional. Essa é uma das melhores maneiras de encontrar uma área que ninguém explorou antes, mas pode ser demorada e exigir paciência. Provavelmente, você passará muito tempo procurando e tentando garimpar ouro antes de encontrá-lo, e isto é muito melhor do que sair no terreno e perder seu tempo, tempo este que poderia estar aqui estudando a fim de ter melhores probabilidades de o encontrar.

Outras rochas associadas à presença de ouro
Ferro, chumbo e magnetita:
Esses são metais e minerais mais pesados, frequentemente associados à presença de ouro. Na verdade, esses metais, rochas e minerais se formam em torno de veios de ouro que se quebram e se dispersam por meio da erosão e do transporte mecânico e hídrico. Esses minerais e metais pesados ​​dão uma dica de que o ouro pode estar apenas por perto.

Magnésio férrico:
É um tipo de mineral que pode ajudá-lo a encontrar ouro. Geralmente é de cor escura e pode ter tons pretos ou vermelhos nas laterais. Esse tipo de mineral costuma ser uma pista interessante de que o ouro pode estar próximo devido à sua associação privilegiada.

Malaquita e azurita:
É uma pedra semipreciosa de cor verde e frequentemente encontrada perto de depósitos de ouro. Isso significa que se você encontrar esse mineral, seria uma boa ideia ampliar sua pesquisa, pois pode ser encontrado ouro nas proximidades.

Calcopirita:
Também chamado de pirita ou “ouro do tolo”, porque diz a lenda que muitos novos garimpeiros foram enganados por acreditar que era ouro que tinham no fundo da panela. Embora fosse apenas pirita. No entanto, o ouro do tolo é regularmente encontrado perto de depósitos de ouro. É até um bom indicador de sua presença. Um estudo recente explica que o ouro pode estar contido em certos depósitos de antigas piritas naturalmente ricas em arsênico. Este ouro pode, portanto, ser explorado por processo químico.
 
Conheça outros minerais associados ao ouro:


Fontes:

A associação do ouro e magnetita

Associação do ouro a minerais ferrosos
Ferro, chumbo, pirita e magnetita são alguns dos metais e minerais mais pesados, e que frequentemente estão associados à localização de depósitos de ouro.
Isso ocorre porque esses metais, rochas e minerais são formados em torno dos veios de ouro, que se quebram e se espalham para fora do próprio ouro por meio de processos de erosão.
Alguns minerais e metais pesados oferecem uma pista de que o ouro pode estar por perto.

Informações sobre a Magnetita
achar ouro
Magnetita na matriz de xisto verde, Diamantina-MG.

O hábito é normalmente maciço ou granular (de granulação grossa ou fina). Forma agregados granulares, maciços ou formas lamelares. Os cristais são tipicamente octaédricos, às vezes dodecaédricos, estriados, e mais raramente cúbicos.
O mineral apresenta forma cristalina isométrica, geralmente na forma octaédrica. É um material de dureza 5.5 - 6,5, quebradiço, fortemente magnético, geralmente de cor preta, brilho metálico e com peso específico entre 5,158 a 5,180. É um mineral que se dissolve lentamente em ácido clorídrico (HCI) reagindo tanto para o ferro ferroso como para o ferro férrico forma solução amarelada ou esverdeada.
A cor da magnetita pode variar desde o Marrom, Preto até ao Preto acinzentado.
A magnetita é a pedra-imã mais magnética de todos os minerais da Terra.

A magnetita altera-se para hematita, goethita/limonita, e mais raramente para siderita.

Minerais com os quais ocorre associado
Ocorre associado à cromita, ilmenita, rutilo, olivina, piroxênio, apatita, silicatos (origem ígnea); pirrotita, pirita, calcopirita, pentlandita, esfalerita, hematita, silicatos (origem hidrotermal, metamórfica); hematita, quartzo, opacos (sedimentos).

Também é mais comumente encontrada em formato de pequenos grãos, disseminada nas rochas ígneas e metamórficas, sendo encontrada em grande quantidade nas areias de praia conhecidas como areia mineral, areia ferrosa ou areia preta sendo o resultado de erosão do solo que os rios levam para o mar, concentrando-se nas praias pela ação das ondas e das correntes marítimas.
Minerais de magnetita que contêm de 3,8% a 6,3% de manganês são denominados manganomagnetita, e quando está associada com o corindon é conhecida como esmeril.

A magnetita também é encontrada em meteoritos.

Depósitos de Magnetitas no Brasil
Embora não tenhamos conhecimento se algumas das minas que exploram magnetitas no Brasil tenha ouro associado, as maiores explorações de magnetita no Brasil estão nos estados da Bahia, Minas Gerais, Goiás, Mato Grosso, Pará e Rio Grande do Norte mas há magnetitas catalogadas e exploradas economicamente também nos seguintes estados.

Alagoas, Amapá, Amazonas, Ceará, Espírito Santo, Maranhão, Mato Grosso do Sul, Paraíba, Paraná, Pernambuco, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, São Paulo e Tocantins.
No Brasil ainda há a variedade Magnetita Titanífera.

Seria possível achar ouro com imã?
(veja as respostas clicando no link a seguir)

Associação do ouro à magnetita
Um tipo comum de depósito de ouro é aquele em que o ouro está associado à magnetita mineral, onde o ouro é formado em peles de magnetita granular. O mineral possui uma fórmula química Fe3O4 que é freqüentemente encontrada em áreas metamorfoseadas por contato associadas a intrusões de magma em rochas carbonáticas ou silico-carbonáticas. Nesses depósitos, os minerais comuns encontrados incluem piroxênios, anfibólios, granadas e menores quantidades de escapolita, vesuvianita e outros silicatos, mas o mais importante é a magnetita.
magnetita em matriz de calcopirita contrastante
Calcopirita depositada na magnetita. A magnetita são os cristais pretos.

No campo, a magnetita é um dos minerais mais facilmente encontrados, porque é magnético e atraído por um ímã; alguns desses minerais possuem o próprio magnetismo fraco, por isso é chamado de Lodestone.

A primeira associação do ouro e magnetita ocorre no fundo da bateia, na forma de areia preta que contém pequenas manchas de ouro.
achar ouro
Essa areia preta, juntamente com outros minerais pesados, é considerada minério por si só e é frequentemente refinada para recuperar o teor de ouro.

Cristais de magnetita em uma matriz de feldspato
Cristais de magnetita em uma matriz de feldspato.

A magnetita contendo ouro pode ser encontrada em depósitos maciços, onde o ouro é muitas vezes invisível a olho nu, com o ouro sendo disseminado por todo o depósito de magnetita. Os corpos inferiores neste tipo de depósito podem ser apresentados como um em particular, tubular ou mais raramente como depósitos em chapa.

Os minerais sulfetados encontrados em tal depósito são geralmente de natureza secundária que foram depositados por águas hidrotermais carregadas de minerais. Em alguns depósitos deste tipo, os objetivos também estão associados aos sulfetos, principalmente arseno-pirita e outros minerais sulfídricos.

Se o ouro estiver presente em um desses depósitos, ele não deve ser disseminado pelo corpo da rocha e quantidades tão pequenas fazendo que grande parte do ouro são invisíveis a olho nu, ou pode haver pequenas manchas de ouro visíveis. O teor usual desse tipo pode variar em cerca de 113gramas por tonelada.

Uma grande quantidade de ouro pode ser recuperada da magnetita usando o processo de lixiviação que tira proveito da capacidade do cianeto de sódio ou potássio em dissolver o ouro. Como regra geral, são necessários aproximadamente 56 gramas de cianeto em solução para tratar o ouro dessa maneira.
O cianeto é extremamente venenoso, pois são necessários apenas 10/10 de grama para matar uma pessoa. Também apresenta questões ambientais muito sérias que precisam ser abordadas. Se existirem as devidas salvaguardas ambientais, o uso de cianeto na extração de ouro é extremamente econômico.

GDA, o substituto do cianeto na recuperação do ouro:

Lista de minerais que estão associados ao achar ouro: