Mineral do Ano

Mineral do Ano
Mineral Of The Year

Em 2014, o IMA (Associação Mineralógica Internacional) apresentou sua iniciativa “Mineral do Ano”, com o objetivo de reconhecer as descobertas minerais mais inspiradoras e emocionantes publicadas em um determinado ano civil.
Com esta iniciativa, o IMA gostaria também de agradecer à Comissão sobre Novos Minerais, Nomenclatura e Classificação (CNMNC) pelo seu trabalho incansável.
A iniciativa " Mineral of the Year ", é destinada a Geólogos e aficionados a reconhecer as descobertas minerais mais inspiradoras e emocionantes publicadas em um determinado ano civil, e reconhecer o trabalho da Comissão de Novos Minerais, Nomenclatura e Classificação (CNMNC).
Mais de 100 novas espécies minerais são aprovadas pela Comissão todos os anos a partir de um número ainda maior de propostas enviadas de todo o mundo. Escolher o vencedor nunca é fácil e é sempre um trabalho extra para o painel de especialistas da CNMNC.
Nunca é fácil escolher o vencedor no meio de uma lista de nomeados, mas aqui estão os minerais do ano.


Seaborgite
Mineral do ano 2021
Seaborgite - Mineral do ano 2021
O mineral do ano de 2021 foi encontrado e totalmente caracterizado por uma equipe de pesquisa liderada por Anthony R. Kampf, do Departamento de Ciências Minerais do Museu de História Natural de Los Angeles County, Los Angeles, CA 90007, EUA.
Seaborgite foi encontrado no subsolo na mina Blue Lizard, Red Canyon, White Canyon District, San Juan Co., Utah, EUA, onde ocorre em uma crosta espessa de gesso sobrepondo uma matriz composta principalmente de cristais de quartzo. Minerais associados são copiapite, ferrinatrite, ivsite, metavoltine, römerita e outros minerais atualmente desconhecidos.
Seaborgite ocorre como prismas achatados longos (ou lâminas), de cor amarelo-claro e até 0,2 mm de diâmetro. comprimento. Os cristais geralmente ocorrem em sprays radiantes e parecem muito bons.
A fórmula química ideal da seaborgita é LiNa6K2(UO2)(SO4)5(SO3OH)(H2O), portanto é um uranilo mineral sulfato. Seaborgite é a única espécie mineral conhecida contendo lítio e urânio como elementos formadores de espécies, e também é um dos poucos minerais contendo três metais.
O mineral recebeu o nome de Glenn Seaborg (1912-1999), um químico americano que esteve envolvido na síntese, descoberta e investigação de 10 elementos transurânicos, incluindo o seaborgium.

Bojarite
Mineral do Ano 2020
Bojarite - Mineral do Ano 2020
Para 2020, o prêmio de "Mineral do Ano" foi atribuído ao bojarito, encontrado e caracterizado por uma equipe de pesquisa liderada por Nikita Chukanov (Academia Russa de Ciências, Moscou).
O bojarito foi descoberto em um depósito de guano na encosta norte da montanha Pabellón de Pica, 1,5 km ao sul da vila de Chanabaya, Iquique Province, Tarapacá Region, Chile. O mineral ocorre como agregados porosos de grão fino azul com alguns mm de largura. Minerais associados são salamoníacos, halite, chanabayaite, nitratine e belloite. Sua fórmula química ideal é Cu3 (N3C2H2) 3 (OH) [Cl2 (H2O) 4] · 2H2O, portanto a bojarita é um mineral de triazolato de cobre.
A bojarita é um mineral supergênico formado como resultado da alteração da chanabayaita na zona de contato entre um depósito de guano de ave profundamente alterado e gabro anfibólio com calcopirita. Bojaíta é o nono novo mineral encontrado no depósito de guano em Pabellón de Pica. Vale a pena notar que outro mineral da mesma ocorrência, chanabayaite, foi eleito como o "Mineral do Ano ”em 2015.

Tewite
Mineral do Ano 2019
Tewite - Mineral do Ano 2019
Em 2019, o prestigioso título foi para “Tewite” que foi descoberto nas proximidades da aldeia de Nanyang, Condado de Huaping, localizado no sul da região de Panzhihua – Xichang, sudoeste da China.
Ocorre no Neoproterozóico Siniano biotita-quartzo monzonita meteorizada pela luz, perto da zona de contato com gabro.
Os minerais associados são feldspato alcalino, biotita, clinoanfibole, ilmenita, zircão, zoisita, turmalina, monazita- (Ce), alanita- (Ce), escelita, telurita e um novo mineral Wumuite (KAl0.33W2.67O9, IMA2017-067a), além de um mineral potencialmente novo não identificado correspondente a WO3.

Carmeltazita
Mineral do Ano 2018
Carmeltazita - Mineral do Ano 2018
Carmeltazita, um novo complexo óxido (ZrAl 2 Ti 4 O 11), forma inclusões pretas em cristais de corindo azul (“Carmel SapphireTM”) de rochas piroclásticas cretáceas e depósitos aluviais associados em Kishon Mid-Reach, no norte de Israel. Seu nome alude à localidade tipo no Monte Carmelo e aos três principais metais em sua fórmula (Ti, Al e Zr). A Carmeltazita foi descoberta por William L. Griffin (Universidade Macquarie, Austrália), Sarah EM Gain (Universidade da Austrália Ocidental), Luca Bindi (Università degli Studi di Firenze, Itália), Vered Toledo (Shefa Gems Ltd., Israel), Fernando Cámara (Università degli Studi di Milano, Itália), Martin Saunders (Universidade da Austrália Ocidental) e Suzanne Y. O'Reilly (Universidade Macquarie).
Desde que sua descrição foi publicada em Minerais(Griffin et al., 2018), o mineral ganhou muita publicidade online como “a mais nova pedra preciosa do mundo” (EraGem, 2019), e até mesmo um “mineral extraterrestre mais duro que diamantes” (Flatley, 2019). Embora de origem perfeitamente terrestre e não particularmente gema, o Mineral do Ano 2018 contém Ti3+, completamente raro no ambiente geológico, e possui uma estrutura cristalina peculiar, que está remotamente relacionada ao arranjo compacto do espinélio. Como pode ser visto em sua fórmula, a estrutura da carmeltazita é deficiente em cátions e ânions em relação aos espinélios, enquanto sua simetria é reduzida a ortorrômbica. Talvez ainda mais notável do que sua imagem pública ou estrutura seja a associação da Carmeltazita com outros minerais Ti3+ e carbonetos.

Rowleyita
Mineral do Ano 2017
Rowleyite - Mineral do Ano 2017
Rowleyita são cristais cuboctaédricos pretos salpicando mottramite verde encontrado em um túnel subterrâneo na mina Rowley abandonada no Arizona, e nomeado para a localidade tipo. A fórmula química dessa nova espécie é tão complexa quanto sua estrutura cristalina, e ambas são um testemunho das capacidades da ciência moderna e da singularidade das condições geológicas que levaram à cristalização da Rowleyita. Embora compostos estruturalmente relacionados sejam conhecidos na ciência dos materiais como “sólidos mesoporosos com modelagem de sal” e “polioxometalatos”, é difícil identificar sucintamente algo que tenha a fórmula [Na(NH 4 ,K) 9 Cl 4][V 2 5+ ,4+ (P,As)O 8 ]6.n [H2O, Na,NH4 ,K,Cl]. Rowleyite pode ser descrita como um fosfovanadato com uma estrutura porosa semelhante a zeólita, na qual pequenas gaiolas hospedam os aglomerados [(NH 4 ,K) 9 Cl 4 ] 5+ formando uma “rede de sal” e grandes gaiolas acomodam H 2 O, NH4 , Na, K e Cl. Este modelo de complexidade mineralógica foi descoberto e publicado no American Mineralogist (volume 102, páginas 1037-1044) por Anthony R. Kampf (Museu de História Natural do Condado de Los Angeles, EUA), Mark A. Cooper (Universidade de Manitoba, Canadá), Barbara P. Nash e Thure E. Cerling(Universidade de Utah, EUA), Joe Marty (Salt Lake City, Utah), Daniel R. Hummer (Southern Illinois University, EUA), Aaron J. Celestian (Museu de História Natural do Condado de Los Angeles), Timothy P. Rose (Lawrence Livermore National Laboratory, EUA) e Thomas J. Trebisky (Universidade do Arizona, EUA).
Parabéns à equipe vencedora por esta descoberta emocionante!

Merelaniita
Mineral do Ano 2016
Merelaniita - Mineral do Ano 2016
Este mineral foi descoberto em espécimes de colecionadores da região de Merelani, no nordeste da Tanzânia, e investigado por  John A. Jaszczak (Michigan Technological University, Houghton, EUA), Michael S. Rumsey (Natural History Museum, Londres, Reino Unido), Luca Bindi (Università di Firenze, Florença, Itália), Stephen A. Hackney (MTU), Michael A. Wise (National Museu de História Natural, Washington, EUA), Chris J. Stanley (NHM) e John Spratt (NHM). A Merelaniita, cujos incomuns cristais semelhantes a bigodes foram inicialmente confundidos com Molibdenita, é na verdade um novo membro do grupo das cilindritas (Jaszczak et al. 2016). A nova espécie é notável não apenas por sua morfologia, que lembra “rolos” microscópicos delgados parcialmente desenrolados, ou pela estrutura composta por alternância de pseudo-tetragonal (tipo PbS) e pseudo-hexagonal (MoS 2-type), mas também pelo facto de ser proveniente da famosa zona mineira que produz há 50 anos a pedra preciosa Tanzanite (zoisite azul com vanádio). Outros minerais incomuns encontrados em associação com a melaniita são wurtzita e alabandita bem cristalizadas, que representam apenas um estágio evolutivo na complexa história metamórfica dos depósitos de Merelani. Gostaríamos de parabenizar John Jaszczak e seus coautores por este prêmio e encorajar os leitores a aprender mais sobre a melaniita em seu artigo de acesso aberto em Minerais (www.mdpi.com/2075-163X/6/4/115) .

Chanabayaita
Mineral do Ano 2015
Chanabayaita - Mineral do Ano 2015
Este mineral foi descoberto e estudado por Nikita V. Chukanov da Academia Russa de Ciências (Chernogolovka, Região de Moscou) em colaboração com Natalia V. Zubkova (Universidade Estatal de Moscou, MSU), Gerhard Möhn (Niedernhausen, Alemanha), Igor V. Pekov (MSU), Dmitry Yu. Pushcharovsky (MSU) e Aleksandr E. Zadov (NPP Teplokhim, Moscou).
Chanabayaite, Cu 2 (N 3 C 2 H 2 )Cl(NH 3 ,Cl,H 2 O,[]) 4, é uma nova espécie mineral do Monte Pabellón de Pica perto da aldeia de Chanabaya na região de Tarapacá do Chile (Chukanov et al. 2015). Este mineral organometálico incomum não possui apenas uma estrutura cristalina única que apresenta o ânion 1,2,4-triazolato (N 3 C 2 H 2)-, mas também atua como uma “ponte” entre a geosfera e a biosfera, pois seus cristais de um azul profundo se formaram onde depósitos de guano (fonte de C e N) entraram em contato com um gabro contendo calcopirita (que forneceu o Cu ). Chanabayaite formada pela lixiviação de Na e Cl e pela desidratação de outro composto natural contendo triazolato e potencialmente outro novo mineral – NaCu 2 Cl 3 [N 3 C 2 H 2 ] 2 [NH 3 ] 2 ·4H 2 O (Zubkova et al. 2016).
O Prof. Chukanov é conhecido internacionalmente tanto por suas fascinantes descobertas minerais (chanabayaite é apenas uma das 190 novas espécies sob o cinturão de Chukanov) quanto por suas contribuições proeminentes para a espectroscopia mineral [mais recentemente, Chukanov (2014) e Chukanov e Chervonnyi (2016)].
Chanabayaite é o primeiro mineral triazolato reconhecido. É também um dos poucos minerais atualmente conhecidos que contêm grupos ammina, incluindo também ammineita, joanneumita e shilovita.

Ophirite (Ofirita)
Mineral do Ano 2014
Ophirite - (Ofirita) Mineral do Ano 2014
Ophirite, Ca 2 Mg 4 [Zn 2 Mn 2 3+(H 2 O) 2 (Fe3+W 9 O 34 ) 2 ]·46H 2O, é uma nova espécie mineral da mina Ophir Hill Consolidated, distrito de Ophir, Oquirrh Mountains, Tooele County, Utah, EUA, e foi descrita por Anthony R. Kampf do Museu de História Natural do condado de Los Angeles e co-autores: John M. Hughes (Universidade de Vermont), Barbara P. Nash (Universidade de Utah), Stephen E. Wright (Universidade de Miami), George R. Rossman (Caltech) e Joe Marty (Utah) (Kampf et al., 2014). Ophirite forma belos cristais castanho-alaranjados em forma de comprimido de até 1 mm de comprimento e é o primeiro mineral conhecido a conter um defeito lacunar derivado do ânion Keggin, ou seja, um heteropoliânion faltando alguns de seus segmentos octaédricos (Keggin, 1934). As fases com o ânion Keggin são importantes na química do estado sólido como catalisador.
Gostaríamos de parabenizar os autores pela descoberta da Ofirita e encorajar todos os leitores a lerem sobre esta fantástica descoberta no artigo da American Mineralogista .



Fontes:

Rochas e minerais nos Açores, PORTUGAL

Os Açores, oficialmente Região Autónoma dos Açores, é uma das duas regiões autónomas de Portugal (juntamente com a Madeira).
É um arquipélago composto por nove ilhas vulcânicas na região da Macaronésia do Oceano Atlântico Norte, a cerca de 1.360 km (850 mi) a oeste de Portugal continental.
Ilhéu de Vila Franca do Campo, Azores
Ilhéu Vila Franca do Campo, Açores - PORTUGAL

Nas ilhas dos Açores predominam as rochas vulcânicas, estando as rochas sedimentares especialmente presentes na ilha de Santa Maria, onde frequentemente apresentam conteúdo fossilífero diversificado e importante.
A natureza explosiva de alguns vulcões dos Açores traduz-se nos abundantes depósitos pomíticos (pedra-pomes) presentes em muitas ilhas, bem como de ignimbritos. O carácter hidromagmático de algumas erupções vulcânicas (quando o magma entra em contacto com água) traduz-se em diversos depósitos de tufos e em lavas submarinas.
Do ponto de vista composicional, nas ilhas de Santa Maria, São Jorge e Pico predominam as rochas basálticas, enquanto nas restantes ilhas há uma maior variedade, desde basaltos a riólitos e traquitos.

A única commodities mineral explorável ​​ou explorada registada nesta região é a Sílica.

Nos Açores estão catalogados cerca de 98 minerais, sendo que 4 tipo de minerais válidos pelo IMA (International Mineralogical Association) só são encontrados no arquipélogo, são eles:
Faialita (fayalite)
Nomeado por Christian Gottlieb Gmelin em 1840 para a localidade, Ilha do Faial.
Localidade: Faial, Açores, Portugal

Chiappinoíte
Homenageia o colecionador Luigi Chiappino, de Milão, Itália, que descobriu o mineral que foi aprovado pelo IMA em 2014.
Localidade: Vulcão Água de Pau (Vulcão do Fogo), São Miguel, Açores, Portugal

Fogoíte
Nomeado com o nome da localidade onde foi encontrado, Vulcão Lagoa do Fogo, Ilha de São Miguel. Aprovado pelo IMA em 2015.
Localidade: Ruínas de Lombadas arredores, Ribeira Grande, São Miguel, Açores, Portugal

Håleniusita
Nomeado em uma homenagem ao Prof. Ulf Hålenius (nascido em 1951), professor e Diretor do Departamento de Mineralogia do Museu de História Natural de Estocolmo, Suécia, por suas contribuições à espectroscopia de minerais e às ciências minerais em geral.
Localidade: Vulcão Água de Pau (Vulcão do Fogo), São Miguel, Açores, Portugal


Lista de minerais dos Açores:
Egirina, Egirina-augita, Enigmatita, Albita, 'Série Albita-Anortita',
'Alkali Feldspato', Alofano, Alum- (K), 'Supergrupo Anfibólio', Analcime,
Andradita, Annita, 'Anortoclásio', 'Apatita', Aragonita,
Arfvedsonita, Astrofilita, Augita, Baddeleyita, Bastnäsite- (Ce),
'Biotita', Britholite- (Ce), 'Grupo Britholite', Britholite- (Y), Calcita,
Catapleiite, Cerite- (Ce), Chevkinite- (Ce), Chiappinoite- (Y) (TL),
'Subgrupo Clinopiroxênio', Dalyita, Diopsídio, Ekanita, Elpidita,
Epididimita, Eudialyte, 'Eudialyte Group', Euxenite- (Y), Fayalite (TL),
'Série Fayalita-Forsterita', Fergusonita- (Y), Ferridrita, Ferro-edenita,
Ferro-katoforita, Ferrokentbrooksita, Ferro-richterita, Fluocerita- (Ce),
Fluorapatita, Fluorcalciopirocloro, Fluorita, Fluornatropirocloro,
Fogoite- (Y) (TL), Forsterite, Gadolinite- (Y), Grafite, Gesso, Girolite,
Halita, Hedenbergita, Hematita, Hingganita- (Y), Huttonita, Ilmenita,
Kaersutite, Katophorite, Kentbrooksite, Låvenite, 'Limonite', Lorenzenite,
Magnetita variedade Magnetita titanífera, Manganoeudialyte, Moissanita,
Molibdenita, Monazita- (Ce), Narsarsucita, Natrolita, Okanoganita- (Y), Oneilita,
Opala, Parisita- (Ce), Petarasita, 'subgrupo Phillipsita', Polícrase- (Y), Pirita,
'Grupo Pirocloro', 'Grupo Piroxênio', Pirrotita, Quartzo, Sanidina, Sodalita,
'Subgrupo de anfibólio de sódio', 'Subgrupo de anfibólio de sódio-cálcio', Esteaciita,
Enxofre, Torita, Titanita, Tremolita, Turquestanita, Vlasovite, 'Wad',
Zircão, Zirconolite e Zircophyllite.

Diferente tipos de rochas encontrados no arquipélogo:
Obsidiana negra vítrea, Coleção Museu Geológico de Lisboa
Obsidiana negra vítrea, Coleção Museu Geológico de Lisboa

Basalto alcalino, Basalto, Tufo basáltico, Basáltico-traquiandesita,
Basanita, Basanitóide, Benmoreita, Riolito comendítico,
Conglomerado, Diorito, Dunita, Gabro, Harzburgita, Havaíto,
Tufo Ignimbrítico, Calcário, Mugearita, Obsidiana, Basalto de olivina,
Riolito pantellerítico, Sienito peralcalino, Tefrita fonolítica, Picrobasalto,
Pedra-pomes, Quartzo-sienito, Arenito, Espinela lherzolita, Sienito,
Tefrite, Tefrítico-fonólito, Traquito, Websterite e Wehrlito.

A descoberta de novos minerais nos Açores
por National Geographic Portugal:
Aenigmatite, Açores - Portugal
Aenigmatite, Açores - PORTUGAL





Lista de Minerais válidos pelo IMA - Associação Mineralógica Internacional
COMISSÃO DE NOVOS MINERAIS,
NOMENCLATURA E CLASSIFICAÇÃO

Imagens de:
National Geografic via sapo.pt
Mindat.org
Museu Geológico via LNEG


Fontes:

Origem e autenticidade de pedras preciosas e diamantes

Determinando a origem e autenticidade de pedras preciosas usando EDXRF
A fluorescência de raios X dispersivos de energia (EDXRF) é uma ferramenta não destrutiva para determinar a autenticidade de pedras preciosas coloridas e sua origem geográfica.
origem e autenticidade de pedras preciosas
Pedras preciosas incluem diamantes e pedras coloridas, como rubis, esmeraldas e safiras.
Embora o diamante continue sendo a pedra preciosa mais cara, as gemas coloridas estão ganhando popularidade rapidamente, e com seus usos crescentes passaram a ser alvos de falsificações.
À medida que o valor das gemas coloridas aumentam, aumentam também a necessidade de verificar sua autenticidade e origem, porém isto é impossível de se observar a olho nú.
Grandes joalherias e laborátórios gemológicos usam equipamentos de dispersão de energia por raios X.

Como você pode ter certeza de que uma pedra preciosa colorida é real?
Veja o exemplo da imagem abaixo e diga qual desses Rubis é o natural, qual é sintético, qual é o rubi que levou tratamento térmico e qual é o vidro.
A resposta esta no final do artigo e assim você vai ver o quanto 
é difícil uma identificação a olho nú, até mesmo para um gemólogo.
comparação de Rubi sintético e Rubi natural
Imagem comparativa de Rubi sintético e Rubi natural.

Tal como acontece com o ouro, as falsificações de pedras preciosas ou pedras sintéticas podem ser confundidas com as verdadeiras. Índia e China são de onde provém a maioria destas pedras preciosas falsas ou sintéticas.
Outro fator importante para estabelecer o valor de uma pedra preciosa é saber de onde ela veio, tanto geologicamente quanto geograficamente, o que não pode ser determinado visualmente.

A fluorescência de raios X dispersivos por energia (EDXRF) é uma ferramenta importante para a determinação da autenticidade de gemas coloridas e sua origem geográfica. Dependendo do cenário geológico, pedras preciosas como rubis, esmeraldas ou safiras de diferentes origens geralmente exibem uma combinação característica de oligoelementos em diferentes concentrações.
Como exemplo, a identificação e quantificação de tais elementos podem permitir rastrear uma esmeralda até seu local de origem, como Colômbia, Brasil, Afeganistão, Zâmbia ou Zimbábue afim de determinar os diferentes valores para aquilo que parece ser uma mesma pedra, a esmeralda, porém, uma esmeralda proveniente da Colômbia e mais cara que uma congênere brasileira ou Zambiana pela sua maior qualidade.
Da mesma forma, a presença de certos oligoelementos também ajuda a distinguir entre uma pedra preciosa valiosa formada naturalmente (por exemplo, rubi) e um cristal sintético quase sem valor (por exemplo, rubi sintético).


Determinando a origem dos Diamantes
A "genética" (DNA) dos diamantes
famosos diamantes em bruto do Brasil
Famosos diamantes brutos do Brasil

Já para deteminar a origem de um diamante só é possível graças às pesquisas com mais de 30 anos do Instituto de Geociências (IGC), cujo trabalho foi coordenador pelo Profº. Mario Luiz de Sá Carneiro Chaves. Estes diversos estudos realizados levaram à confecção de uma tabela em que são relacionados os atributos básicos de um diamante.
Estes estudos ajudam a determinar a origem de um diamante para fins de certificação Kimberley.
Destinadas à caracterização mineralógica de diamantes de diversas regiões do Brasil e do mundo, parte desses resultados podem contribuir para o combate ao contrabando com o objetivo de combater também a comercialização de pedras extraídas de áreas de conflito, conhecidas como “diamantes de sangue”.
A partir de sete características como seu brilho e formas, predominantemente octaédricas e rombododecaédricas, além da quilatagem e de outros atributos, exames acurados podem reunir todos os aspectos e então sua origem pode ser revelada.

O DNA dos diamantes brasileiros
(créditos da imagem: Editoria de Arte/Editoria de Arte/Folhapress)
genética dos diamantes brasileiros
Rondônia - Terra Indígena Roosevelt:
Cristais sem cor ou com tom amarelo claro, intactos e tetraédricos (piramidais com quatro lados).
Bahia - Chapada Diamantina:
Diamantes com muitas manchas verdes e morrons, sobre um amarelo-acastanhado.
genética dos diamantes brasileiros
Bahia - Braúna:
Cristais sem manchas e com coloração mais diversificada.
Mato Grosso - Juína:
Cristais quebradiços ou fragmentados, com uma cor amarelo-acastanhado.
genética dos diamantes brasileiros
Minas Gerais
Coromandel:
Cristais quebradiços ou fragmentados sem manchas, em geral amarelos ou marrons.
Espinhaço:
Cristais amarelados, com muitas marcas e manchas verdes e marrons.


RESPOSTA:
Comparação de Rubi sintético, natural, tratado termicamente e vidro.
comparação de Rubi sintético e Rubi natural
Imagem comparativa de Rubi sintético e Rubi natural.

A- Rubi de fusão, sintético.
B- Rubi de Moçambique natural não aquecido e não tratado.
C- Rubi birmanês natural aquecido (intensificação da cor).
D- Rubi composto de vidro.

MITO, quanto mais limpa a pedra, maior a chance de ser sintética.
ERRADO, como visto na imagem acima, isso não é verdade.
Na verdade, a única maneira de saber se o rubi é natural ou sintético é verificando as inclusões ao microscópio ou usando fluorescência de dispersão de Raio-X (EDXRF).


Fontes:

Rochas vulcânicas que contém pedras preciosas

Algumas rochas são um indicador de que elas podem conter pedras preciosas no seu interior.
basalto amigdalóide com cristais de piroxena e olivinas
Basalto amigdalóide com fenocristais de piroxena e olivinas

A maioria destas rochas são rochas ígneas, ou seja, rochas de composição vulcânicas.
Estas rochas ígneas são formadas pelo resfriamento e solidificação do magma ou lava.

Principais rochas vulcânicas que podem conter pedras preciosas são: Kimberlito e Lamproíto, Basalto, Riolito e nos Pegmatitos.
Já o Xisto não é uma rocha vulcânica mas é uma destas rochas hospedeiras de pedras preciosas.

O tipo de pedras preciosas encontrados na matriz destas rochas vai depender da formação química destes vulcões ou do solo de que foi formado.
esmeralda na matriz de pegmatito
Esmeralda na matriz de pegmatito

Encontre uma destas rochas e muito provavelmente encontrará pedras preciosas como diamante, água-marinha (berilo), turmalina, rubi, safira, ametista (quartzo), topázio, esmeralda (berilo), pirita, etc.

Basalto
olivina e piroxena no basalto
Das rochas vulcânicas o Basalto é o mais conhecido, porém, há basaltos e basaltos.
Vocábulo antigo dos léxicos geográfico, naturalista e, mais tarde, geológico, “basalto” é, pois, o termo geral que designa o equivalente vulcânico do gabro, a rocha plutónica de composição máfica e ferro, e com baixo conteúdo em sílica, pelo que uma e outra são qualificadas como básicas.
Mais de 90% das rochas básicas são vulcânicas e, dentro delas, mais de 90% são basaltos, constituindo o essencial da crosta oceânica. No seu conjunto, os basaltos são as rochas magmáticas mais abundantes na crosta terrestre, onde ocupam cerca de 70% da superfície. Os granitos ocupam os restantes 30%, confinados à crosta continental.
Basalto é hoje um vocábulo petrográfico muito abrangente das rochas vulcânicas com as características químicas e acima definidas (conteúdo em sílica entre 52% e 49%). Aplica-se, não só àquelas cuja lava brota à superfície e aí arrefece e solidifica, como às que, no decurso desta actividade, solidificam a meio caminho da extrusão. É o caso dos chamados basaltos das soleiras, diques, chaminés e outros corpos intrusivos de relativamente pequena profundidade, muitos deles designados por doleritos.

Quais gemas são encontradas na rocha ígnea e como são formados?
As pedras preciosas encontradas em rochas ígneas incluem os quartzos (incluindo ametista, citrino e ametrino), as granadas, pedra da lua, apatita, diamante, espinélio, tanzanita, turmalina, topázio e zircão. Algumas dessas gemas se formam em pegmatitos e veios hidrotermais que são geneticamente relacionados a rochas ígneas.
rocha de pegmatito
Rocha de pegmatito, Portugal

Pelo resfriamento do magma, os átomos são ligados em padrões cristalinos e, posteriormente, diferentes minerais são formados. Quando a formação ocorre nas profundezas da crosta terrestre (aprox. 33 km de profundidade) podem formar-se rochas bastante grandes (por exemplo, granitos).

Rochas ígneas são formadas e criadas por processos magmáticos na terra. Para formar cristais muito grandes de minerais raros, são necessárias condições excepcionais. Por exemplo, a rocha de pegmatito é formada pela cristalização de magma enriquecido com água nos veios de outras rochas, podendo conter berilo, turmalina e topázio.

As rochas ígneas são divididas em dois tipos, a rocha vulcânica (extrusiva) e a rocha plutônica (intrusiva), dependendo de onde o magma esfria.

Rocha vulcânica ou extrusiva
Esta é a rocha que se forma na superfície da terra. Em contato com o ar ou a água do mar, a rocha derretida esfria rapidamente e se extingue em um vidro (como obsidiana) ou forma pequenos cristais (basalto). As rochas vulcânicas são geralmente de granulação fina ou de estrutura vítrea.

O basalto é uma rocha extrusiva, de granulação fina devido ao seu rápido resfriamento. Consiste em grande parte em minúsculos cristais de feldspato e piroxênio (como diopsídio, olivinas e enstatita). Alguns basaltos contêm pedras preciosas como corindo, zircão e granadas.

Outra rocha vulcânica é o kimberlito. Os tubos de kimberlite são a maior fonte de diamante.

Ocasionalmente, variedades de vidro vulcânico, obsidiana, são lapidadas e transformadas em pedras preciosas.
A obsidiana é um mineraloide amorfo com dureza de aproximadamente 5,5.
tipos de obsidiana
Alguns tipos de obsidiana

Variedades de obsidiana incluem:
Obsidiana floco de neve (com inclusões do mineral cristobalita);
Obsidiana arco-íris;
Obsidiana de mogno vermelho;
Obsidiana de brilho prateado;
Obsidiana rendada meia-noite;
Abóbora obsidiana e
Obsidiana "lágrimas de apache".

Rocha plutônica ou intrusiva
Quando a rocha derretida se solidifica dentro da rocha preexistente, ela esfria lentamente, formando rochas plutônicas com cristais maiores. Eles tendem a ser de granulação grossa.

O granito é uma rocha intrusiva de grão grosso que contém os minerais quartzo e feldspato, e geralmente carrega mica ou hornblenda. Em algumas circunstâncias, o granito sofre "cristalização fracionada", um processo em que o resfriamento lento cria cristais de diferentes minerais à medida que se formam em diferentes temperaturas.

Os minerais do grupo dos pegmatitos estão entre os últimos a serem formados, muitas vezes ocorrendo como veios que penetram em seu entorno.

Minerais associados que encontram sua origem em rochas ígneas:
Berilo;
Crisoberilo;
Corindo;
Diamante;
Granada;
Feldspato;
Peridoto (uma das formas de Olivinas);
Quartzo (e suas variedades);
Espinélio;
Topázio;
Turmalina e
Zircão.

Fases do ciclo ígneo ou magmático
Os estágios do ciclo ígneo ou magmático são os seguintes:
1. Fase do ciclo ígneo ou magmático
Cromita;
Magnetita e
Magnetita de titânio.

2. Fase magmática líquida (cristalização principal) 1500-600 graus C:
Espinélio;
Zircão;
Apatita;
Peridoto e 
Diamante.

3. Fase de pegmatita (cristalização em repouso) 700-400 graus C:
A parte residual do magma, que é rica em fluxos, é conhecida como estágio pegmatítico. O fundido torna-se uma solução aquosa à medida que a solidificação prossegue. Devido a essa fluidez, os líquidos podem penetrar em fissuras e rachaduras nas rochas circundantes. Sob a pressão e as temperaturas concentradas, formam-se cristais individuais que podem medir vários centímetros e, ocasionalmente, vários metros. Os cristais prismáticos crescem perpendicularmente às paredes do veio.
Os veios de pegmatito são alguns dos melhores exemplos de formação de pedras preciosas.
Turmalina;
Berilo;
Quartzo;
Feldspato;
Zircão;
Apatita;
Brasilianita;
Grafite;
Moscovita e
Lepidolita.

4. Fase pneumatolítica 500-300 graus C:
Os minerais formados nesta fase se formam em temperaturas mais baixas e pressão crescente. Componentes voláteis superaquecidos estão envolvidos. O mais proeminente desses componentes são os gases de vapor de água, boro e flúor. Sob a influência desses vapores, outros minerais são frequentemente formados na zona de contato do calcário.
Topázio;
Euclase;
Vesuvianita;
Fluorita;
Cassiterita;
Sheelite e
Volframite.

5. Fase hidrotérmica 400-50 graus C:
Este é um processo associado à atividade ígnea que envolve água aquecida ou superaquecida. A água a temperatura e pressão muito altas é uma substância extremamente ativa, capaz de quebrar silicatos e dissolver muitas substâncias normalmente consideradas insolúveis. Este é o último estágio dos minerais que podem ser considerados formados diretamente do magma.
Ouro;
Prata;
Esmeralda (colombiana);
Berilo;
Quartzo;
Barita;
Pirita;
Dolomite e
Calcita.

Ouro disseminado no Granito
O ouro em rochas ígneas; tendo em vista a mineralização de ouro.
Ouro disseminado no Granito, PORTUGAL
Ouro disseminado no Granito Rosa Porrinho, Portugal

O ouro é um constituinte do granito e das rochas plutónicas.
Essas rochas cristalinas podem ser uma fonte primária do ouro, que se concentram nos veios.
Geralmente a disseminação do ouro no granito ocorre em pequenas escamas, raramente ultrapassando um milímetro de diâmetro, distribuído pelas escamas de mica e aparentemente encerrado em grânulos de feldspato e quartzo como é o exemplo da foto acima.


Zircão para calcular a idade da terra
O zircão se forma em granitos nas profundezas da crosta terrestre (rocha plutônica). Através do movimento das placas tectônicas, esse granito é trazido à superfície e inicia a construção da montanha. Através da erosão, o granito (e o zircão contido) constrói sedimentos que eventualmente serão enterrados profundamente o suficiente para se transformarem em rochas metamórficas.
ZIRCON du Sénégal
Zircão do Senegal

O zircão tem duas propriedades importantes:
Alta dureza relativa e
Resistência a ataques químicos.

Devido à sua dureza de 7,5 na escala de Mohs, os zircões costumam sobreviver intactos ao processo sedimentar. Devido à sua resistência a ataques químicos, o zircão sobreviverá ao processo de metamorfismo de contato que tenta atacá-lo com calor e pressão. Este último é importante, pois a massa líquida ao redor do zircão fará com que uma nova borda seja formada ao redor do antigo zircão, assim como a formação de anéis de árvores.
Este primeiro ciclo geralmente levará centenas de milhões de anos.

Saiba como a pedra de Zircão ajuda a clacular a idade da terra:

Formações rochosas que contém ouro:


Fontes:
e outras várias.