Mostrar mensagens com a etiqueta Minerais. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Minerais. Mostrar todas as mensagens

Lista de bancos de dados de minerais

Lista de Bancos de Dados de Minerais
Minerals Databases List

Diretório de bancos de dados on-line relacionados à mineralogia e cristalografia para caçadores de rochas, entusiastas e colecionadores.

(a maioria dos sites estão em língua inglesa, pelo que recomendamos um tradutor automático como o do GoogleChrome que traduz automaticamente)


Este site tem uma interface para um banco de dados de estruturas cristalinas que inclui todas as estruturas publicadas no American Mineralogist e no The Canadian Mineralogist, European Journal of Mineralogy and Physics and Chemistry of Minerals, bem como conjuntos de dados selecionados de outros periódicos.

Lista alfabética e sistemática de minerais de acordo com a classificação de Strunz, com fórmulas químicas. Pode-se também pesquisar no banco de dados nomes de minerais (incluindo variedades) e fórmula mineral para elementos. (Pierre Perroud, Genève, Suíça)

Este banco de dados de minerais contém mais de 1000 descrições de espécies minerais individuais (em russo) com imagens de espécimes minerais

Esse arquivo permite saber em qual instituição o tipo de mineral foi depositado. Ele também fornece o número da amostra. Minerais AK e LZ

Catálogo alfabético de espécimes-tipo alojados nos Museus Minerais da Alemanha.

Pesquise neste banco de dados com informações cristalográficas como parâmetros celulares, posições atômicas, etc.

O banco de dados GeoRef, criado pelo Instituto Geológico Americano em 1966, fornece acesso à literatura geocientífica do mundo. O banco de dados contém mais de 2,6 milhões de referências a artigos de periódicos de geociências, livros, mapas, documentos de conferências, relatórios e teses.

Aqui estão arquivos PDF de cada página do manual, distribuídos gratuitamente ao público no site da MSA.
Pesquisar pela primeira letra do nome do mineral.

Novos minerais aprovados recentemente pelo IMA-CNMNC. As informações são fornecidas pelo IMA-CNMNC para fins comparativos e como um serviço aos mineralogistas que trabalham com novas espécies.
Já no link a seguir você vai ver a lista oficial de nomes de minerais do IMA-CNMNC
esta lista contém nomes e dados para minerais que foram aprovados, desacreditados, redefinidos e renomeados e é a nova lista principal revisada de todos os minerais IMA aprovados e adquiridos pelo IMA (ou seja, herdados de antes de 1960) Banco de Dados de Propriedades Minerais
criado e mantido pelo Projeto RRUFF em parceria com o IMA.

Lista de minerais reconhecidos pelo IMA -International Mineralogical Association

Lista de dados de todos os Zeólitos naturais, pelo IZA (a Comissão de Zeólitos Naturais).

banco de dados de informações de minerais fluorescentes com mais de 1000 imagens e mais de 400 espectros.

É um banco de dados de estrutura cristalina para minerais e seus análogos estruturais.

MINDAT
Este site é uma referência mineralógica online e recurso de localidade para colecionadores e estudantes de mineralogia em todo o mundo. Este é um dos sites que eu, OFICINA70, mais recomenda e utiliza nas suas pesquisas de localidade.

MINER é um produto desenvolvido na Suíça por Jacques Lapaire. É um arquivo mineralógico muito completo que permite obter não só o filete de um mineral, mas também efetua pesquisas variadas sobre os físicos, químicos e cristalográficos proprietários de minerais.
O arquivo está apresentado em língua francesa mas quem utiliza o GoogleChrome a tradução pode ser automática dependendo da sua versão.

Mais de 7.000 fotos de minerais e localidades. Todos os usuários registrados podem fazer upload de suas próprias fotos.

é um banco de dados de minerais (que inclui imagens) catalogados por nome, classe, agrupamentos interessantes e incluindo uma pesquisa de texto completo.

É uma ajuda on-line para a identificação de 300 dos minerais mais comuns.
Insira a dureza, raia, hábito ou outra característica e obtenha descrições e fotos dos minerais que correspondem aos seus dados de pesquisa.

É a plataforma para pessoas interessadas em mineralogia, geologia, paleontologia e mineração desde 2001. Mineralienatlas opera o maior banco de dados de minerais, fósseis, rochas e suas localidades. Informações abrangentes em alemão e inglês.

A coleção de espécimes minerais compreende mais de 15.000 amostras, representando cerca de 1.000 espécies minerais diferentes. A maioria das amostras é derivada da África Central, particularmente da República Democrática do Congo e Ruanda.

Este é um banco de dados de fotos com propriedades de identificação de minerais.

Aqui você pesquisa minerais por nome e vai obter informações de diferentes bancos de dados.

Fornece informações sobre cores em minerais e acesso a dados sobre Espectros de Absorção de Minerais nas regiões visível e infravermelha do espectro e espectros Raman de minerais.

O site do Projeto RRUFF contendo um banco de dados integrado de espectros Raman, difração de raios X e dados químicos para minerais.

Bancos de dados de espectroscopia Raman listados pelo Infrared and Raman Users Group (IRUG).

Banco de dados de software para cristalografia.

Um ponto focal baseado na web e recurso para visualizações 3-D de moléculas e minerais projetados para uso instrucional. Pelo Projeto Minerais e Moléculas, uma colaboração de Químicos do Solo, Mineralogistas do Solo e Pedagogos trabalhando juntos para fornecer recursos instrucionais aprimorados para a ciência do solo e educação em geociências.
O nome do mineral deverá ser colocado em Inglês.

Contendo mais de 5.000 páginas de dados minerais. Descrições de espécies minerais ligadas a tabelas minerais por cristalografia, composição química, propriedades físicas e ópticas, classificação Dana, classificação Strunz, origens de nomes minerais, informações de localidade mineral e listagem alfabética de todas as espécies minerais válidas conhecidas. (David A. Barthelmy)
Também é um dos bancos de minerais mais consultados pela OFICINA70.

A nova segunda edição, (julho de 2022), inclui reescrita significativa e substituições de fotos e adição de uma grande enciclopédia mineral (Capítulo 14) com muitas fotografias, vale a pena ver.

Este banco de dados contém minerais e minérios de elementos específicos; minerais individuais e destacados; um número limitado de rochas; e alguns materiais industriais importantes para referência.

Um banco de dados de ocorrências minerais, minas e propriedades minerais nos Estados Unidos.

O MINABS Online fornece uma ferramenta de pesquisa exclusiva para pesquisadores que trabalham nas áreas de mineralogia, cristalografia, geoquímica, petrologia, mineralogia ambiental e tópicos relacionados. A base de dados contém mais de 120.000 resumos de artigos publicados entre 1982 e 2008 – originou-se da revista Mineralogical Abstracts, uma publicação da Mineralogical Society of Great Britain & Ireland.

Um banco de dados dos minerais na extensa coleção do Smithsonian.
A coleção de minerais e pedras preciosas do Smithsonian no Museu Nacional de História Natural consiste em aproximadamente 350.000 espécimes minerais e 10.000 pedras preciosas, tornando-se uma das maiores do gênero no mundo. Juntamente com os espécimes destacados aqui, o mundialmente famoso Hope Diamond, uma notável coleção de meteoritos e centenas de outros itens espetaculares da coleção podem ser vistos na Smithsonian GeoGallery.

NOTA:
Observe que esta não é uma lista exaustiva e pode haver outros bancos de dados disponíveis para áreas específicas de pesquisa mineralógica.
O que fize aqui foi dar apenas algumas sugestões e indicações para seus trabalhos e pesquisas.


Alguns site de informações gerais de minerais ou pedras preciosas que você também deverá visitar:

WIKIPEDIA (lista de minerais)
GIA (diamantes)


Brasil:

Portugal:



Fontes:

Lista dos minerais críticos

Minerais críticos
(List of Critical Minerals)
A lista de minerais críticos é considerada uma lista dos minerais mais importantes para a economia de um país.
Lista dos minerais críticos

O Serviço Geológico dos Estados Unidos (USGS), divulgou uma nova lista de 50 commodities minerais críticos para a economia e segurança nacional dos EUA após uma extensa avaliação de várias agências.

A lista de minerais críticos de 2022 foi determinada usando os métodos científicos mais atualizados para avaliar a criticidade mineral. A nova lista contém mais 15 commodities em comparação com a primeira lista de minerais críticos do país criada em 2018. A lista de minerais críticos de 2022 adiciona níquel e zinco à lista enquanto remove hélio, potássio, rênio e estrôncio.

Nos U.S.A. os minerais críticos desempenham um papel significativo na segurança nacional, na economia, no desenvolvimento de energia renovável e nas infraestruturas.
Deve haver uma estratégia clara da cadeia de suprimentos, pois eles são principalmente importados e, de acordo com a definição dos EUA, propensos a interrupções na cadeia de suprimentos. Além disso, os minerais combustíveis são excluídos da lista de minerais críticos.
List of Critical Minerals
A Lei de Energia US de 2020 define um “mineral crítico” como um mineral não combustível ou material mineral essencial para a segurança econômica ou nacional dos EUA e que possui uma cadeia de suprimentos vulnerável a interrupções. Os minerais críticos também são caracterizados por cumprirem uma função essencial na fabricação de um produto, cuja ausência teria consequências significativas para a economia ou a segurança nacional. 

A lista de minerais críticos de 2022, enquanto “final”, não pretende ser uma designação permanente de criticidade mineral, mas ser uma lista dinâmica atualizada periodicamente para representar dados atuais sobre oferta, demanda, concentração de produção e prioridades políticas atuais.

A lista de minerais críticos dos EUA é uma lista oportuna para fornecer orientação para o uso dos governos de vários países para a indústria da mineração e para outras agências.

A demanda mundial e a importância destes minerais são a base para manter um país com uma indústria e economia forte.

De acordo com a Lei de Energia de 2020, Seção 7002, subseção 2, a lista de minerais críticos é revisada a cada três anos pelo US Geological Survey.
A lista final mais recente é a de 2022.

Na lista de 2022, existem 50 minerais considerados críticos:
List of Critical Minerals
Alumínio*
utilizado em quase todos os setores da economia;

Antimônio
usado em baterias de chumbo-ácido e retardadores de chama;

Arsênico
usado em semicondutores;

Barita
usada na produção de hidrocarbonetos;

Berílio
usado como agente de liga nas indústrias aeroespacial e de defesa;

Bismuto
usado em pesquisas médicas e atômicas;

Cério*
usado em conversores catalíticos, cerâmica, vidro, metalurgia e compostos de polimento;

Césio
usado em pesquisa e desenvolvimento;

Cobalto
usado em baterias recarregáveis ​​e superligas;

Cromo
usado principalmente em aço inoxidável e outras ligas;

Disprósio
usado em ímãs permanentes, dispositivos de armazenamento de dados e lasers;

Érbio
usado em fibra óptica, amplificadores ópticos, lasers e corantes de vidro;

Escândio
usado para ligas, cerâmicas e células de combustível;

Európio
usado em fósforos e hastes de controle nuclear;

Espatoflúor
usado na fabricação de produtos químicos de alumínio, cimento, aço, gasolina e flúor;

Estanho
usado como revestimentos protetores e ligas para aço;

Gadolínio*
usado em imagens médicas, ímãs permanentes e siderurgia;

Gálio
usado para circuitos integrados e dispositivos ópticos como LEDs;

Germânio
usado para fibra óptica e aplicações de visão noturna;

Grafite*
usado para lubrificantes, baterias e células de combustível;

Háfnio
usado para hastes de controle nuclear, ligas e cerâmicas de alta temperatura;

Hólmio
usado em ímãs permanentes, hastes de controle nuclear e lasers;

Índio
usado em telas de cristal líquido;

Irídio
usado como revestimento de ânodos para processos eletroquímicos e como catalisador químico;

Itérbio
usado para catalisadores, cintilômetros, lasers e metalurgia;

Ítrio
usado para cerâmica, catalisadores, lasers, metalurgia e fósforo;

Lantânio*
usado para produzir catalisadores, cerâmica, vidro, compostos de polimento, metalurgia e baterias;

Lítio
usado para baterias recarregáveis;

Lutécio
usado em cintiladores para imagens médicas, eletrônicos e algumas terapias contra o câncer;

Magnésio
usado como liga e para reduzir metais;

Manganês
usado na siderurgia e baterias;

Neodímio*
usado em ímãs permanentes, catalisadores de borracha e em lasers médicos e industriais;

Níquel
usado para fazer aço inoxidável, superligas e baterias recarregáveis;

Nióbio
usado principalmente em aço e superligas;

Paládio*
usado em conversores catalíticos e como agente catalisador;

Platina*
usada em conversores catalíticos;

Praseodímio*
usado em ímãs permanentes, baterias, ligas aeroespaciais, cerâmicas e corantes;

Ródio*
usado em conversores catalíticos, componentes elétricos e como catalisador;

Rubídio
usado para pesquisa e desenvolvimento em eletrônica;

Rutênio*
usado como catalisadores, bem como contatos elétricos e resistores de chip em computadores;

Samário*
usado em ímãs permanentes, como absorvente em reatores nucleares e em tratamentos de câncer;

Tântalo
usado em componentes eletrônicos, principalmente capacitores e em superligas;

Telúrio
usado em células solares, dispositivos termoelétricos e como aditivo de liga;

Térbio
usado em ímãs permanentes, fibra óptica, lasers e dispositivos de estado sólido;

Titânio
usado como pigmento branco ou ligas metálicas;

Túlio
usado em várias ligas metálicas e em lasers;

Tungstênio
usado principalmente para fazer metais resistentes ao desgaste;

Vanádio
usado principalmente como agente de liga para ferro e aço;

Zinco
usado principalmente na metalurgia para produzir aço galvanizado e

Zircônio
usado em cerâmicas de alta temperatura e ligas resistentes à corrosão.


Observe que os itens sublinhados foram adicionados recentemente em 2022 e os itens com um asterisco* foram editados.


As modificações da lista anterior incluem:

-Alumínio foi anteriormente listado como Alumínio (bauxita)

-Grafite foi anteriormente listado como Grafite (natural)

-Hélio, Potássio, Rênio, Estrôncio e Urânio foram removidos da lista. O urânio foi removido por ser classificado como um mineral combustível.

-Metais do grupo da platina (irídio, paládio, platina, ródio, rutênio e ósmio) foram anteriormente listados juntos como um grupo. Eles foram separados e Iridium e Osmium foram removidos da lista.

-Metais pertencentes ao grupo de elementos de terras raras (Cério, Gadolínio, Lantânio, Neodímio, Praseodímio e Samário) foram anteriormente listados juntos como um grupo. Eles foram separados.


Fontes:

Mineral do Ano

Mineral do Ano
Mineral Of The Year

Em 2014, o IMA (Associação Mineralógica Internacional) apresentou sua iniciativa “Mineral do Ano”, com o objetivo de reconhecer as descobertas minerais mais inspiradoras e emocionantes publicadas em um determinado ano civil.
Com esta iniciativa, o IMA gostaria também de agradecer à Comissão sobre Novos Minerais, Nomenclatura e Classificação (CNMNC) pelo seu trabalho incansável.
A iniciativa " Mineral of the Year ", é destinada a Geólogos e aficionados a reconhecer as descobertas minerais mais inspiradoras e emocionantes publicadas em um determinado ano civil, e reconhecer o trabalho da Comissão de Novos Minerais, Nomenclatura e Classificação (CNMNC).
Mais de 100 novas espécies minerais são aprovadas pela Comissão todos os anos a partir de um número ainda maior de propostas enviadas de todo o mundo. Escolher o vencedor nunca é fácil e é sempre um trabalho extra para o painel de especialistas da CNMNC.
Nunca é fácil escolher o vencedor no meio de uma lista de nomeados, mas aqui estão os minerais do ano.


Seaborgite
Mineral do ano 2021
Seaborgite - Mineral do ano 2021
O mineral do ano de 2021 foi encontrado e totalmente caracterizado por uma equipe de pesquisa liderada por Anthony R. Kampf, do Departamento de Ciências Minerais do Museu de História Natural de Los Angeles County, Los Angeles, CA 90007, EUA.
Seaborgite foi encontrado no subsolo na mina Blue Lizard, Red Canyon, White Canyon District, San Juan Co., Utah, EUA, onde ocorre em uma crosta espessa de gesso sobrepondo uma matriz composta principalmente de cristais de quartzo. Minerais associados são copiapite, ferrinatrite, ivsite, metavoltine, römerita e outros minerais atualmente desconhecidos.
Seaborgite ocorre como prismas achatados longos (ou lâminas), de cor amarelo-claro e até 0,2 mm de diâmetro. comprimento. Os cristais geralmente ocorrem em sprays radiantes e parecem muito bons.
A fórmula química ideal da seaborgita é LiNa6K2(UO2)(SO4)5(SO3OH)(H2O), portanto é um uranilo mineral sulfato. Seaborgite é a única espécie mineral conhecida contendo lítio e urânio como elementos formadores de espécies, e também é um dos poucos minerais contendo três metais.
O mineral recebeu o nome de Glenn Seaborg (1912-1999), um químico americano que esteve envolvido na síntese, descoberta e investigação de 10 elementos transurânicos, incluindo o seaborgium.

Bojarite
Mineral do Ano 2020
Bojarite - Mineral do Ano 2020
Para 2020, o prêmio de "Mineral do Ano" foi atribuído ao bojarito, encontrado e caracterizado por uma equipe de pesquisa liderada por Nikita Chukanov (Academia Russa de Ciências, Moscou).
O bojarito foi descoberto em um depósito de guano na encosta norte da montanha Pabellón de Pica, 1,5 km ao sul da vila de Chanabaya, Iquique Province, Tarapacá Region, Chile. O mineral ocorre como agregados porosos de grão fino azul com alguns mm de largura. Minerais associados são salamoníacos, halite, chanabayaite, nitratine e belloite. Sua fórmula química ideal é Cu3 (N3C2H2) 3 (OH) [Cl2 (H2O) 4] · 2H2O, portanto a bojarita é um mineral de triazolato de cobre.
A bojarita é um mineral supergênico formado como resultado da alteração da chanabayaita na zona de contato entre um depósito de guano de ave profundamente alterado e gabro anfibólio com calcopirita. Bojaíta é o nono novo mineral encontrado no depósito de guano em Pabellón de Pica. Vale a pena notar que outro mineral da mesma ocorrência, chanabayaite, foi eleito como o "Mineral do Ano ”em 2015.

Tewite
Mineral do Ano 2019
Tewite - Mineral do Ano 2019
Em 2019, o prestigioso título foi para “Tewite” que foi descoberto nas proximidades da aldeia de Nanyang, Condado de Huaping, localizado no sul da região de Panzhihua – Xichang, sudoeste da China.
Ocorre no Neoproterozóico Siniano biotita-quartzo monzonita meteorizada pela luz, perto da zona de contato com gabro.
Os minerais associados são feldspato alcalino, biotita, clinoanfibole, ilmenita, zircão, zoisita, turmalina, monazita- (Ce), alanita- (Ce), escelita, telurita e um novo mineral Wumuite (KAl0.33W2.67O9, IMA2017-067a), além de um mineral potencialmente novo não identificado correspondente a WO3.

Carmeltazita
Mineral do Ano 2018
Carmeltazita - Mineral do Ano 2018
Carmeltazita, um novo complexo óxido (ZrAl 2 Ti 4 O 11), forma inclusões pretas em cristais de corindo azul (“Carmel SapphireTM”) de rochas piroclásticas cretáceas e depósitos aluviais associados em Kishon Mid-Reach, no norte de Israel. Seu nome alude à localidade tipo no Monte Carmelo e aos três principais metais em sua fórmula (Ti, Al e Zr). A Carmeltazita foi descoberta por William L. Griffin (Universidade Macquarie, Austrália), Sarah EM Gain (Universidade da Austrália Ocidental), Luca Bindi (Università degli Studi di Firenze, Itália), Vered Toledo (Shefa Gems Ltd., Israel), Fernando Cámara (Università degli Studi di Milano, Itália), Martin Saunders (Universidade da Austrália Ocidental) e Suzanne Y. O'Reilly (Universidade Macquarie).
Desde que sua descrição foi publicada em Minerais(Griffin et al., 2018), o mineral ganhou muita publicidade online como “a mais nova pedra preciosa do mundo” (EraGem, 2019), e até mesmo um “mineral extraterrestre mais duro que diamantes” (Flatley, 2019). Embora de origem perfeitamente terrestre e não particularmente gema, o Mineral do Ano 2018 contém Ti3+, completamente raro no ambiente geológico, e possui uma estrutura cristalina peculiar, que está remotamente relacionada ao arranjo compacto do espinélio. Como pode ser visto em sua fórmula, a estrutura da carmeltazita é deficiente em cátions e ânions em relação aos espinélios, enquanto sua simetria é reduzida a ortorrômbica. Talvez ainda mais notável do que sua imagem pública ou estrutura seja a associação da Carmeltazita com outros minerais Ti3+ e carbonetos.

Rowleyita
Mineral do Ano 2017
Rowleyite - Mineral do Ano 2017
Rowleyita são cristais cuboctaédricos pretos salpicando mottramite verde encontrado em um túnel subterrâneo na mina Rowley abandonada no Arizona, e nomeado para a localidade tipo. A fórmula química dessa nova espécie é tão complexa quanto sua estrutura cristalina, e ambas são um testemunho das capacidades da ciência moderna e da singularidade das condições geológicas que levaram à cristalização da Rowleyita. Embora compostos estruturalmente relacionados sejam conhecidos na ciência dos materiais como “sólidos mesoporosos com modelagem de sal” e “polioxometalatos”, é difícil identificar sucintamente algo que tenha a fórmula [Na(NH 4 ,K) 9 Cl 4][V 2 5+ ,4+ (P,As)O 8 ]6.n [H2O, Na,NH4 ,K,Cl]. Rowleyite pode ser descrita como um fosfovanadato com uma estrutura porosa semelhante a zeólita, na qual pequenas gaiolas hospedam os aglomerados [(NH 4 ,K) 9 Cl 4 ] 5+ formando uma “rede de sal” e grandes gaiolas acomodam H 2 O, NH4 , Na, K e Cl. Este modelo de complexidade mineralógica foi descoberto e publicado no American Mineralogist (volume 102, páginas 1037-1044) por Anthony R. Kampf (Museu de História Natural do Condado de Los Angeles, EUA), Mark A. Cooper (Universidade de Manitoba, Canadá), Barbara P. Nash e Thure E. Cerling(Universidade de Utah, EUA), Joe Marty (Salt Lake City, Utah), Daniel R. Hummer (Southern Illinois University, EUA), Aaron J. Celestian (Museu de História Natural do Condado de Los Angeles), Timothy P. Rose (Lawrence Livermore National Laboratory, EUA) e Thomas J. Trebisky (Universidade do Arizona, EUA).
Parabéns à equipe vencedora por esta descoberta emocionante!

Merelaniita
Mineral do Ano 2016
Merelaniita - Mineral do Ano 2016
Este mineral foi descoberto em espécimes de colecionadores da região de Merelani, no nordeste da Tanzânia, e investigado por  John A. Jaszczak (Michigan Technological University, Houghton, EUA), Michael S. Rumsey (Natural History Museum, Londres, Reino Unido), Luca Bindi (Università di Firenze, Florença, Itália), Stephen A. Hackney (MTU), Michael A. Wise (National Museu de História Natural, Washington, EUA), Chris J. Stanley (NHM) e John Spratt (NHM). A Merelaniita, cujos incomuns cristais semelhantes a bigodes foram inicialmente confundidos com Molibdenita, é na verdade um novo membro do grupo das cilindritas (Jaszczak et al. 2016). A nova espécie é notável não apenas por sua morfologia, que lembra “rolos” microscópicos delgados parcialmente desenrolados, ou pela estrutura composta por alternância de pseudo-tetragonal (tipo PbS) e pseudo-hexagonal (MoS 2-type), mas também pelo facto de ser proveniente da famosa zona mineira que produz há 50 anos a pedra preciosa Tanzanite (zoisite azul com vanádio). Outros minerais incomuns encontrados em associação com a melaniita são wurtzita e alabandita bem cristalizadas, que representam apenas um estágio evolutivo na complexa história metamórfica dos depósitos de Merelani. Gostaríamos de parabenizar John Jaszczak e seus coautores por este prêmio e encorajar os leitores a aprender mais sobre a melaniita em seu artigo de acesso aberto em Minerais (www.mdpi.com/2075-163X/6/4/115) .

Chanabayaita
Mineral do Ano 2015
Chanabayaita - Mineral do Ano 2015
Este mineral foi descoberto e estudado por Nikita V. Chukanov da Academia Russa de Ciências (Chernogolovka, Região de Moscou) em colaboração com Natalia V. Zubkova (Universidade Estatal de Moscou, MSU), Gerhard Möhn (Niedernhausen, Alemanha), Igor V. Pekov (MSU), Dmitry Yu. Pushcharovsky (MSU) e Aleksandr E. Zadov (NPP Teplokhim, Moscou).
Chanabayaite, Cu 2 (N 3 C 2 H 2 )Cl(NH 3 ,Cl,H 2 O,[]) 4, é uma nova espécie mineral do Monte Pabellón de Pica perto da aldeia de Chanabaya na região de Tarapacá do Chile (Chukanov et al. 2015). Este mineral organometálico incomum não possui apenas uma estrutura cristalina única que apresenta o ânion 1,2,4-triazolato (N 3 C 2 H 2)-, mas também atua como uma “ponte” entre a geosfera e a biosfera, pois seus cristais de um azul profundo se formaram onde depósitos de guano (fonte de C e N) entraram em contato com um gabro contendo calcopirita (que forneceu o Cu ). Chanabayaite formada pela lixiviação de Na e Cl e pela desidratação de outro composto natural contendo triazolato e potencialmente outro novo mineral – NaCu 2 Cl 3 [N 3 C 2 H 2 ] 2 [NH 3 ] 2 ·4H 2 O (Zubkova et al. 2016).
O Prof. Chukanov é conhecido internacionalmente tanto por suas fascinantes descobertas minerais (chanabayaite é apenas uma das 190 novas espécies sob o cinturão de Chukanov) quanto por suas contribuições proeminentes para a espectroscopia mineral [mais recentemente, Chukanov (2014) e Chukanov e Chervonnyi (2016)].
Chanabayaite é o primeiro mineral triazolato reconhecido. É também um dos poucos minerais atualmente conhecidos que contêm grupos ammina, incluindo também ammineita, joanneumita e shilovita.

Ophirite (Ofirita)
Mineral do Ano 2014
Ophirite - (Ofirita) Mineral do Ano 2014
Ophirite, Ca 2 Mg 4 [Zn 2 Mn 2 3+(H 2 O) 2 (Fe3+W 9 O 34 ) 2 ]·46H 2O, é uma nova espécie mineral da mina Ophir Hill Consolidated, distrito de Ophir, Oquirrh Mountains, Tooele County, Utah, EUA, e foi descrita por Anthony R. Kampf do Museu de História Natural do condado de Los Angeles e co-autores: John M. Hughes (Universidade de Vermont), Barbara P. Nash (Universidade de Utah), Stephen E. Wright (Universidade de Miami), George R. Rossman (Caltech) e Joe Marty (Utah) (Kampf et al., 2014). Ophirite forma belos cristais castanho-alaranjados em forma de comprimido de até 1 mm de comprimento e é o primeiro mineral conhecido a conter um defeito lacunar derivado do ânion Keggin, ou seja, um heteropoliânion faltando alguns de seus segmentos octaédricos (Keggin, 1934). As fases com o ânion Keggin são importantes na química do estado sólido como catalisador.
Gostaríamos de parabenizar os autores pela descoberta da Ofirita e encorajar todos os leitores a lerem sobre esta fantástica descoberta no artigo da American Mineralogista .



Fontes:

Rochas e minerais nos Açores, PORTUGAL

Os Açores, oficialmente Região Autónoma dos Açores, é uma das duas regiões autónomas de Portugal (juntamente com a Madeira).
É um arquipélago composto por nove ilhas vulcânicas na região da Macaronésia do Oceano Atlântico Norte, a cerca de 1.360 km (850 mi) a oeste de Portugal continental.
Ilhéu de Vila Franca do Campo, Azores
Ilhéu Vila Franca do Campo, Açores - PORTUGAL

Nas ilhas dos Açores predominam as rochas vulcânicas, estando as rochas sedimentares especialmente presentes na ilha de Santa Maria, onde frequentemente apresentam conteúdo fossilífero diversificado e importante.
A natureza explosiva de alguns vulcões dos Açores traduz-se nos abundantes depósitos pomíticos (pedra-pomes) presentes em muitas ilhas, bem como de ignimbritos. O carácter hidromagmático de algumas erupções vulcânicas (quando o magma entra em contacto com água) traduz-se em diversos depósitos de tufos e em lavas submarinas.
Do ponto de vista composicional, nas ilhas de Santa Maria, São Jorge e Pico predominam as rochas basálticas, enquanto nas restantes ilhas há uma maior variedade, desde basaltos a riólitos e traquitos.

A única commodities mineral explorável ​​ou explorada registada nesta região é a Sílica.

Nos Açores estão catalogados cerca de 98 minerais, sendo que 4 tipo de minerais válidos pelo IMA (International Mineralogical Association) só são encontrados no arquipélogo, são eles:
Faialita (fayalite)
Nomeado por Christian Gottlieb Gmelin em 1840 para a localidade, Ilha do Faial.
Localidade: Faial, Açores, Portugal

Chiappinoíte
Homenageia o colecionador Luigi Chiappino, de Milão, Itália, que descobriu o mineral que foi aprovado pelo IMA em 2014.
Localidade: Vulcão Água de Pau (Vulcão do Fogo), São Miguel, Açores, Portugal

Fogoíte
Nomeado com o nome da localidade onde foi encontrado, Vulcão Lagoa do Fogo, Ilha de São Miguel. Aprovado pelo IMA em 2015.
Localidade: Ruínas de Lombadas arredores, Ribeira Grande, São Miguel, Açores, Portugal

Håleniusita
Nomeado em uma homenagem ao Prof. Ulf Hålenius (nascido em 1951), professor e Diretor do Departamento de Mineralogia do Museu de História Natural de Estocolmo, Suécia, por suas contribuições à espectroscopia de minerais e às ciências minerais em geral.
Localidade: Vulcão Água de Pau (Vulcão do Fogo), São Miguel, Açores, Portugal


Lista de minerais dos Açores:
Egirina, Egirina-augita, Enigmatita, Albita, 'Série Albita-Anortita',
'Alkali Feldspato', Alofano, Alum- (K), 'Supergrupo Anfibólio', Analcime,
Andradita, Annita, 'Anortoclásio', 'Apatita', Aragonita,
Arfvedsonita, Astrofilita, Augita, Baddeleyita, Bastnäsite- (Ce),
'Biotita', Britholite- (Ce), 'Grupo Britholite', Britholite- (Y), Calcita,
Catapleiite, Cerite- (Ce), Chevkinite- (Ce), Chiappinoite- (Y) (TL),
'Subgrupo Clinopiroxênio', Dalyita, Diopsídio, Ekanita, Elpidita,
Epididimita, Eudialyte, 'Eudialyte Group', Euxenite- (Y), Fayalite (TL),
'Série Fayalita-Forsterita', Fergusonita- (Y), Ferridrita, Ferro-edenita,
Ferro-katoforita, Ferrokentbrooksita, Ferro-richterita, Fluocerita- (Ce),
Fluorapatita, Fluorcalciopirocloro, Fluorita, Fluornatropirocloro,
Fogoite- (Y) (TL), Forsterite, Gadolinite- (Y), Grafite, Gesso, Girolite,
Halita, Hedenbergita, Hematita, Hingganita- (Y), Huttonita, Ilmenita,
Kaersutite, Katophorite, Kentbrooksite, Låvenite, 'Limonite', Lorenzenite,
Magnetita variedade Magnetita titanífera, Manganoeudialyte, Moissanita,
Molibdenita, Monazita- (Ce), Narsarsucita, Natrolita, Okanoganita- (Y), Oneilita,
Opala, Parisita- (Ce), Petarasita, 'subgrupo Phillipsita', Polícrase- (Y), Pirita,
'Grupo Pirocloro', 'Grupo Piroxênio', Pirrotita, Quartzo, Sanidina, Sodalita,
'Subgrupo de anfibólio de sódio', 'Subgrupo de anfibólio de sódio-cálcio', Esteaciita,
Enxofre, Torita, Titanita, Tremolita, Turquestanita, Vlasovite, 'Wad',
Zircão, Zirconolite e Zircophyllite.

Diferente tipos de rochas encontrados no arquipélogo:
Obsidiana negra vítrea, Coleção Museu Geológico de Lisboa
Obsidiana negra vítrea, Coleção Museu Geológico de Lisboa

Basalto alcalino, Basalto, Tufo basáltico, Basáltico-traquiandesita,
Basanita, Basanitóide, Benmoreita, Riolito comendítico,
Conglomerado, Diorito, Dunita, Gabro, Harzburgita, Havaíto,
Tufo Ignimbrítico, Calcário, Mugearita, Obsidiana, Basalto de olivina,
Riolito pantellerítico, Sienito peralcalino, Tefrita fonolítica, Picrobasalto,
Pedra-pomes, Quartzo-sienito, Arenito, Espinela lherzolita, Sienito,
Tefrite, Tefrítico-fonólito, Traquito, Websterite e Wehrlito.

A descoberta de novos minerais nos Açores
por National Geographic Portugal:
Aenigmatite, Açores - Portugal
Aenigmatite, Açores - PORTUGAL





Lista de Minerais válidos pelo IMA - Associação Mineralógica Internacional
COMISSÃO DE NOVOS MINERAIS,
NOMENCLATURA E CLASSIFICAÇÃO

Imagens de:
National Geografic via sapo.pt
Mindat.org
Museu Geológico via LNEG


Fontes:

LEGO® Minerais, a coleção

LEGO® MINERAIS é uma idéia de novo produto
LEGO® Minerais, a coleção de minerais da LEGO®
LEGO® Minerais, a coleção de minerais da LEGO®

Um conjunto LEGO® muito legal foi proposto no site ideas.lego.com e para aqueles que não sabem, este site permite que designers amadores de LEGO® criem seus próprios conjuntos propostos que são votados e qualquer um que receba pelo menos 10.000 votos são então considerados pela LEGO® para produção como conjuntos de 'Ideias' de tiragem limitada.
OFICINA70 foi o apoiador número: 9.945

LEGO® coleção de minerais

Poderá ver esta idéia acessando o link a seguir

Este conjunto chama-se 'Tesouros da Terra: Reflexões' e inclui excelentes réplicas de quatro soberbos espécimes minerais e uma água-marinha.
LEGO® Pirita cúbica
LEGO® Pirita cúbica

LEGO® Água-marinha
LEGO® Água-marinha

Turmalina rubelita logotipo do Mindat
LEGO® Turmalina Mindat
LEGO® Turmalina Mindat

O maior banco de dados de minerais do mundo, o Mindat,org também apoia esta idéia.
Outras imagens da coleção de minerais da LEGO® Minerals clica no link a seguir:

O que é LEGO® MINERAIS?
LEGO® Minerais combina a beleza excepcional dos minerais da natureza com as infinitas possibilidades de LEGO®.
Construa os cristais, admire-os, colete-os e aprenda como eles se formaram ao longo de centenas de séculos!

LEGO® Quartzo citrino
LEGO® Quartzo citrino

Os espécimes são construídos em escala 1:1 sendo os minerais iniciais desta coleção: Berilo Água-marinha, Geodo de Ametista, Pirita, Rodocrosita, Quartzo, Berilo Vermelho e 4 turmalinas diferentes.

Um conjunto oficial pode incluir de 3 a 5 cristais (sem necessidade de recoloração e entre 1100 a 1700 tijolos) com seus próprios suportes dedicados e etiqueta de nome relativa.
LEGO® Rodocrosita
LEGO® Rodocrosita

LEGO® Rodocrosita
LEGO® Rodocrosita com pedestal

No entanto, a coleção pode crescer ao longo dos anos com lançamentos periódicos pela LEGO® de novos espécimes, afinal, não é disso que tratam as coleções!

LEGO® Minerais é perfeito para exibição, mas também é uma construção interessante, pois muitas técnicas avançadas estão envolvidas. Os cristais são maravilhas geométricas naturais e é bastante complicado construir em diferentes planos e ângulos para representar do que a Natureza é capaz!
LEGO® geodo de Ametista
LEGO® geodo de Ametista

LEGO® Minerais também pode despertar a curiosidade em crianças e adultos e aproximá-los da geologia e mineralogia. Várias instituições e vozes respeitadas na comunidade estão apoiando o projeto e cuidariam das informações educacionais que poderiam complementar o manual de instruções.
LEGO® Turmalina negra
LEGO® Turmalina Schorl

GOSTOU DA IDÉIA?
 Então prepare-se para uma diversão séria!!!

LEGO® Turmalina rubelita
LEGO® Turmalina rubelita


Todas as imagens são fontes do autor da idéia via LEGO®

Fonte:

Plantas, animais e insetos indicadores de minerais e ouro

Você sabia que plantas, animais e insetos podem ser um bom indicativo de minerais?
ant finds a native gold nugget
Formiga com uma pepita de ouro nativo.

O caso mais conhecido é o da planta que indica diamantes, a Pandanus candelabrum.

Vamos explicar e dar-vos a conhecer outras plantas, animais e insetos que indicam minerais e metais no meio natural, no seu estado nativo.
Então, nunca é demais saber disto antes de sair para procurar minerais, estas informações irão te dar uma pequena ajuda, senão, apenas conhecimentos.

Mineradores do futuro
Hoje em dia, para encontrar depósitos minerais, são usados levantamentos magnéticos, geomorfologia, registros históricos de antigas minas, obras e técnicas avançadas de laboratório para descobrir o que se esconde debaixo do solo, se é que existe alguma coisa. 
No entanto, a alta tecnologia requer muita habilidade e treinamento para operar equipamentos e saber exatamente o que você está procurando. 
Mas agora parece que há outra maneira.
Plantas, animais e insetos agora estão sendo considerados como um primeiro porto de escala para os mineiros.

Na verdade estas técnicas, eram usadas na China desde o século 5 A.C. e durante um tempo foram esquecidas devido ao desenvolvimento tecnológico que evoluía a cada ano até aos nossos dias hoje, no entanto mas esta técnicas estão voltando para ajudar geólogos e mineradoras nas suas pesquisas por minerais.

Sabendo disto, muitos geólogos estão em contatos com pesquisadores de outras disciplinas das ciências naturais, como Geobotânica e Geozoologia.
Estes tipos de estudos e descobertas ajudam os geólogos na busca por diamantes, ouro e outros minerais.

Geobotânica
O uso de plantas para identificar depósitos, um termo comumente conhecido como Geobotânica, tem uma longa história na mineração.
planta indicadora de ouro
Cavalinhas (equisetum) é uma indicadora indireta de Mineralização de Ouro

A prospeção geobotânica refere-se à prospeção baseada em plantas indicadoras como metalófitas e na análise da vegetação.

Geobotânicos sabem que algumas plantas só prosperam em solos com metais pesados ​​e estas informações são usadas para descobrir depósitos de metal.

Nos dias atuais um geólogo também estuda o mapeamento geobotânico e a amostragem em terrenos difíceis para poder efetuar pesquisas minerais mais acertadas e promissoras.

Foi através de muitos estudos, geobotânicos descobriram uma planta que crescia apenas acima de tubos de kimberlito, a chamada Pandanus candelabrum, esses tubos de kimberlito normalmente hospedam corpos de diamante, e a pandamus candelabrum se tornou em uma de algumas das plantas que indicam diamantes, as outras vamos falar mais abaixo neste artigo.
No entanto, a identificação do  Pandanus candelabrum, com raízes aéreas em forma de palafitas, é a primeira planta a ser descrita que tem uma afinidade marcada por tubos de kimberlito, ela cresce no tubo e não no elúvio, cobrindo o dique de kimberlito adjacente.

Porém, a Pandanus candelabrum, que é uma palmeira que cresce até 10 metros de altura com um sistema radicular acima do solo semelhante ao dos manguezais. Cresce em solo rico em kimberlito, com alto teor de magnésio, potássio e fósforo. Elas ocorrem em tubos verticais de rocha vulcânica com um diâmetro de centenas de metros. Onde esta árvore cresce diamantes podem ser encontrados. Existem cerca de 6.000 lugares conhecidos no mundo, mas apenas cerca de 600 deles contêm diamantes e apenas 60 têm gemas suficientes para iniciar a mineração.

Plantas indicadoras de diamantes no Brasil:
No Brasil não há relatos de que a Pandamus candelabrum esteja relacionada com corpos kimberlícos, diferente do continente africano.
No entanto há estudos que outras 5 plantas estejam relacionadas com a ocorrência de diamantes no país, são elas:

Sendo a L. adamantinus e a S. adamantium as melhores indicadoras naturais para a ocorrência de diamantes no país.

Veja nosso artigo em, como a Pandamus candelabrum ajuda a encontrar diamantes:

Também já falamos de plantas indicadoras de ouro neste outro artigo, veja:

Plantas indicadoras de ouro e minerais:
Atualmente cerca de 85 espécies são discutidas e largas pesquisas são feitas de suas prováveis indicações da presença de vários minerais que incluem: alumínio, boro, cobalto, cobre, ouro, ferro, chumbo, manganês, níquel, selênio, prata, urânio e zinco. A eficácia de alguns dos indicadores de plantas são questionada e revisada à luz de descobertas mais recentes por alguns dos mais conceituados cientistas.
Observa-se que mais de um terço de todas as plantas indicadoras pertence às famílias Caryophyllaceae, Labiatae e Leguminosae.

Veja exemplos de plantas e seus depósitos de minerais associados (em inglês):

Geozoologia
Bom, e se você acho bizarro estudar plantas para encontrar minerais, então conheça a Geozoologia.
(clica na foto acima para ver o video no seu facebook)

Embora possa parecer absolutamente ridículo, animais e insetos têm sido usados ​​desde tempos imemoriais para ajudar na caça de depósitos minerais e metálicos.

Já no século V aC, Heródoto escreveu em seu livro: As Histórias (Histories - Herodotus), que "formigas peludas" no norte da Índia e no Paquistão, (mais tarde provaram ser marmotas), muitas vezes desenterravam ouro enquanto cavavam suas tocas e túneis enquanto os habitantes locais coletavam o material e peneiravam através de seus montes em busca de ouro. 
Plínio, o Velho, também mencionou exemplos como esse em seu livro: História Natural.

Na verdade, era um conhecimento bastante comum na época e vamos falar disto em outro artigo.

Cães quando bem treinados podem ajudar a encontrar minerais e até ouro, como já dissemos neste nosso artigo:

Também já falamos de que como cupins e formigas ajudam a encontrar ouro neste nosso outro artigo:


Exemplos de como plantas, animais e insetos ajudam na descoberta de minerais:
 A antiga mina de cobre de Viscaria na Suécia recebeu o nome da flor de Viscaria alpina que os garimpeiros usaram para descobrir o depósito, já que a flor é conhecida por crescer em solos com concentrações pesadas de cobre.

Plantas nativas australianas como Stackhouse tyronii e Hybanthus floribundus também podem ser usados ​​como indicadores de chumbo e níquel devido à sua capacidade hiperacumuladora, na verdade, "Stackhousia tryonii" é uma planta nativa endêmica de serpentina, rara e é relatada para hiperacumular níquel até 55.500 mg g-1 com base no peso seco".

Uma planta indicadora "mais fiel" é Ocimum centraliafricanum , a "planta de cobre" ou "flor de cobre" anteriormente conhecida como Becium homblei , encontrada apenas em solos contendo cobre (e níquel) do centro ao sul da África.

Cupinzeiros na África foram usados para descobrir depósitos de ouro, diamantes e outros minerais.
Como os cupins procuram água continuamente, eles podem cavar a profundidades de mais de 70 metros e distâncias de centenas de metros.
Foi assim que foram descobertos o depósito de cobre da Vila Manica em Moçambique em 1973, enquanto a enorme mina de diamante Jwaneng também foi encontrada por amostragem de cupinzeiros. Já na Austrália ocidental, pesquisadores descobriram que alguns cupinzeiros continham altas concentrações de ouro, indicando depósitos maiores em baixo.

Fontes: