Mostrar mensagens com a etiqueta Testes. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Testes. Mostrar todas as mensagens

Metais que colorem as gemas e seu magnetismo

Os metais que colorem as gemas e a relação de magnetismo
(The magnetic metals that color gems).
magnetismo e cores das pedras preciosas
Esta página apresenta um tour detalhado dos 8 metais de transição, que dão cor às gemas.
Esses metais existem como íons (átomos carregados), especificamente como cátions (íons com carga + positiva), que são dissolvidos na química da gema, e dois ou mais desses metais podem às vezes ser dispersos em uma única gema. Nas gemas alocromáticas, os metais existem como impurezas, mas nas gemas idiocromáticas, os íons metálicos fazem parte da química inerente à gema.

Os metais que colorem as gemas são de tudo influências do magnetismo e paramagnetismo das gemas.

Os vários graus de atração magnética causados ​​por esses metais dependem de suas concentrações e estados de valência.

Quando vemos gemas naturais respondendo fortemente a um ímã de neodímio, na maioria das vezes estamos detectando íons de ferro ou, ocasionalmente, íons de manganês.

Causas da cor nas pedras preciosas
Quando impurezas são adicionadas a gemas incolores, cores brilhantes são frequentemente produzidas. Quando o cromo é adicionado ao corindo incolor, nasce um rubi vermelho, e uma esmeralda verde surge quando o cromo é adicionado ao berilo incolor. As cores distintas de muitas pedras preciosas vêm da presença de metais de transição como impurezas em uma rede cristalina transparente. Isso pode ser devido ao chamado campo de cristal ou, alternativamente, um efeito de campo de ligante. Nesse efeito de campo cristalino ou campo ligante, o campo exercido pelo cristal hospedeiro sobre a impureza hospedeira fixa os níveis de energia desta última como um absorvedor de fótons. Dito de outra forma, a ligação química entre o cristal hospedeiro e a impureza convidada sempre envolve a doação de elétrons do cristal hospedeiro para níveis de energia vazios na impureza metálica, ligando o metal ao cristal.

Principais metais que dão cor às pedras preciosas
metais que dão cor às pedras preciosas
Ferro maciço, Manganês sólido e Cromo sólido.

Metais de transição encontrados nas gemas:
1) principalmente ferro;
2) ocasionalmente manganês;
3 e 4) raramente cromo e vanádio;
5) cobalto apenas no raro Espenélio de Cobalto;
6 e 7) cobre e níquel apenas em algumas gemas translúcidas e opacas; e
8) nunca titânio.

Os íons metálicos dentro das gemas não existem como átomos independentes, mas se ligam a outros átomos dentro das gemas, principalmente átomos de oxigênio, para formar vários óxidos, como óxido de ferro (II) (FeO contendo íons Fe2+) e óxido de ferro (III) (Fe2O3) contendo íons Fe3+). Os óxidos metálicos que atuam como corantes tendem a se distribuir uniformemente em gemas lapidadas transparentes e translúcidas.

FERRO
O Ferro (Fe) é um dos elementos mais comuns na crosta terrestre, e é o metal de transição mais comum que causa cor nas pedras preciosas. Como um metal sólido, o ferro está em um estado fundamental não iônico e é ferromagnético (intensamente magnético). Átomos de ferro (íons ferrosos Fe2+ ou íons férricos Fe3+) dentro de óxidos que estão dispersos por uma gema geralmente causam cor. Esses íons de ferro não são ferromagnéticos, mas são fortemente paramagnéticos. Os íons Fe2+ são mais paramagnéticos que os íons Fe3+.
Estimamos que um ímã de Neodímio N52 pode detectar ferro em gemas em concentrações tão baixas quanto 0,1% de óxido de ferro (II) (FeO) por peso.

Os íons de ferro dispersos dentro dos óxidos criam a cor vermelha do corpo em gemas como na Granada almandina, a cor azul como no Berilo água-marinha e a cor verde como visto no Peridoto.

Os íons de ferro envolvidos nos processos de transferência de carga são responsáveis ​​pela cor azul na Iolita, cor verde como se vê na Turmalina "Verdelita" verde e cor marrom, ou como na Turmalina Dravita. O ferro também induz cores amarelas e pretas em outras gemas.


MANGANÊS
Manganês (Mn) é um metal de transição bastante comum em pedras preciosas. Como um metal puro em seu estado fundamental, é muito menos magnético que o ferro puro. No entanto, os íons de manganês (Mn2+) em gemas têm altas suscetibilidades magnéticas e concentrações de óxido de manganês (MnO) tão baixas quanto aproximadamente 0,13% são detectáveis. Devido a uma alta concentração de Mn2+ (até 40% de MnO), a Granada Espessartita laranja é a granada mais fortemente magnética. Granada Almandina colorida por ferro (Fe2+) e Granada Andradite colorida por ferro (Fe3+) estão empatadas em segundo lugar depois de Espessartita.

Os íons de manganês II (Mn2+) também são responsáveis ​​pela cor vermelha e rosa do corpo de muitas gemas, como a Rodocrosita (principalmente translúcida a opaca), que às vezes é ainda mais magnética que a Granada Espessartita. Os íons de manganês III (Mn3+) criam cor em concentrações muito mais baixas do que Mn2+, resultando em gemas fracamente magnéticas ou diamagnéticas. O Mn3+ cria a cor vermelha na Turmalina Rubelita, que geralmente é fracamente magnética, e a cor rosa na Kunzita (espodumena rosa), que é diamagnética. Uma forma de óxido de manganês preto chamada Psilomelane é fortemente magnética devido ao Mn4+, e às vezes é moldada em cabochões opacos decorativos.

Íons Crípticos:
Os íons de ferro e manganês podem ser "crípticos”.
Usamos o termo "críptico" para descrever íons metálicos dispersos dentro de uma gema que não são visíveis como cor, embora sejam detectáveis ​​com um ímã (ou com um espectrômetro, ou mesmo com fluorescência UV). Os íons de manganês no estado de valência de Mn2+ e os íons de ferro como Fe3+ são cromóforos fracos em comparação com a maioria dos outros íons de metais de transição. Em algumas gemas, esses íons Mn2+ e Fe3+ podem não produzir nenhuma cor visível, exceto quando em altas concentrações. A maior parte ou toda a cor em uma gema contendo concentrações relativamente baixas de Fe3+ e Mn2+ pode ser devida a outros íons metálicos dentro da gema e/ou a processos de transferência de carga envolvendo Mn2+ ou Fe3+.

Um metal, várias cores:
Um único tipo de metal pode causar cores diferentes em diferentes gemas. Os íons de manganês causam a cor laranja na granada Spessartine, vermelho na Turmalina Rubelita, preto na Psilomelana e, em casos raros, verde na Andaluzita.

Essa notável variação é resultado de:
1) diferentes estados de valência dos íons metálicos
2) diferenças na geometria das moléculas que contêm os íons metálicos e
3) diferentes átomos que envolvem os íons metálicos.
Por exemplo, os estados de valência dos íons de manganês (Mn2+, Mn3+, Mn4+) podem variar entre as espécies de gemas. As formas dos sítios moleculares (octaédricos, tetraédricos, cúbicos distorcidos) ocupados por esses íons metálicos também podem variar de espécie para espécie. E os tipos de átomos vizinhos que interagem com os íons metálicos podem variar.


CROMO
O cromo (Cr) é o segundo cromóforo metálico mais comum encontrado nas gemas depois do ferro, causando as cores vermelha e verde. O cromo é a razão pela qual os rubis são vermelhos brilhantes e algumas esmeraldas são ricas em verde. O cromo também é a principal causa de fluorescência UV (rosa ou vermelha) em pedras preciosas. Os íons de cromo (principalmente Cr3+) existem dentro de óxidos de cromo (Cr2O3) em pedras preciosas. Quando aplicamos um ímã N52 ao pó de óxido de cromo (III), as partículas são captadas pelo ímã.

Mesmo assim, os óxidos de cromo são apenas 25% tão magnéticos quanto os óxidos de ferro, e o óxido de cromo em pedras preciosas geralmente não é detectável magneticamente, mesmo com flutuação. Isso ocorre principalmente porque o cromo também é um agente corante forte, muito mais forte que o ferro. A concentração de cromo necessária para causar cor pode, em alguns casos, ser quase 100 vezes menor do que a concentração necessária para o ferro causar cor. Portanto, o cromo é geralmente encontrado em concentrações muito baixas. A pequena quantidade de cromo dentro da maioria das gemas vermelhas e verdes é indetectável ou apenas detectável com um ímã.

Gemas naturais que são magnéticas e coloridas principalmente por cromo devem conter adicionalmente impurezas de ocorrência natural de íons de ferro ou manganês que são crípticos, um termo que se usa quando a concentração de ferro ou manganês é suficiente para causar atração magnética, mas o ferro ou manganês não contribuem em nada para a cor. No entanto, o ferro críptico pode modificar o tom de uma gema para um tom mais escuro.

Os íons de ferro crípticos podem ser responsáveis ​​pela maior parte ou por toda a atração magnética observada em gemas verdes coloridas principalmente por cromo, como Diopsídio de cromo, granada demantóide de cromo e algumas esmeraldas (inertes a moderadamente magnéticas). A calcedônia cromada (colorida de verde por vestígios de óxido de cromo) normalmente não contém ferro detectável e geralmente é inerte (diamagnética).

Gemas artificiais, como esmeralda sintética, rubi sintético e espinélio vermelho sintético, são algumas das poucas gemas facetadas transparentes que contêm cromo suficiente para serem definitivamente detectadas com um ímã (um mínimo estimado de 0,4% de óxido de cromo em peso). A maioria dessas gemas são fracamente magnéticas, no limite inferior de detectabilidade, mas algumas esmeraldas sintéticas e esmeraldas naturais com alto teor de cromo podem ser fortemente magnéticas devido ao cromo.

Entre os minerais de gemas naturais coloridos por cromo, esmeraldas, rubis e alguns espinélios vermelhos com forte saturação de cor podem conter cromo suficiente (> 0,4%) para contribuir parcialmente para as respostas magnéticas fracas ou moderadas causadas por uma combinação de ferro e cromo. O conteúdo de cromo em algumas granadas, especialmente o piropo de cromo, também pode contribuir de forma pequena para a suscetibilidade magnética total. A Calcedônia Cromada Verde e, ocasionalmente, a Turmalina Cromada podem mostrar uma fraca atração magnética que pode ser devida inteiramente ao cromo e ao vanádio.

Pequenos cristais verdes de Granada Uvarovita idiocromática (uma granada de cromo opaca) podem conter 10 a 100 vezes mais cromo do que a esmeralda. Os cristais de granada Uvarovita e os cristais de cromo-dravita turmalina são os únicos cristais de gemas naturais que possuem alta suscetibilidade magnética devido ao cromo. Cristais de drusa de Uvarovite mostram uma resposta Pick-up a um ímã N52, e cristais de Uvarovita acima de 1 quilate mostram uma resposta de arrasto.

Às vezes, o cromo é encontrado como um agente corante secundário em gemas que são coloridas principalmente por um metal diferente. Este cromo também pode estar presente sem contribuir para a cor. Por exemplo, a Safira azul geralmente contém um traço de cromo que não é detectável como cor ou magnetismo, mas que causa fluorescência vermelha ou rosa sob luz ultravioleta de onda longa.

Em outros casos raros, o cromo está presente em gemas azuis. A cor azul-esverdeada da Aquaprase Chalcedony (diamagnética) é devida ao cromo em combinação com o níquel, e a cor azul-esverdeada da Chrome Kyanite (cianita cromada) (diamagnética a fracamente magnética) é devida ao cromo em combinação com ferro e titânio. Ambas as gemas aparecem vermelhas sob um filtro Chelsea devido ao cromo.


VANÁDIO
Vanádio (V) é geralmente emparelhado com cromo em gemas verdes alocromáticas. Ele tem a mesma suscetibilidade magnética do cromo, pode criar exatamente as mesmas cores verdes que o cromo e geralmente é o principal componente do par. A cor da gema pode variar de verde escuro a verde claro, dependendo da concentração de V.

O vanádio pode ser a principal causa da cor em muitas gemas verdes, como a esmeralda e a Granada Tsavorita. Várias gemas verdes que têm a palavra "cromo" no nome comercial são, na verdade, coloridas principalmente por vanádio. Exemplos incluem Chrome Sphene, Chrome Tourmaline e Chrome Kornerupine. Comparações de fluorescência UV, reações do filtro Chelsea e espectros de absorção indicam que o vanádio (V3+) em vez do cromo (Cr3+) é o agente de coloração dominante nessas gemas. Assim como o cromo, o vanádio não é detectável magneticamente em concentrações inferiores a aproximadamente 0,4% de óxido de vanádio.

As cores verdes associadas ao vanádio às vezes são levemente azuladas, resultando em cores verdes interessantes, como visto no verde "menta" na Granada Merelani, azul-esverdeado no Crisoberilo de vanádio e azul-esverdeado nas Esmeraldas sintéticas. Mas o cromo também pode criar uma cor azul esverdeada semelhante em pedras preciosas.

Tal como acontece com o cromo, os íons de vanádio são geralmente encontrados em baixas concentrações em gemas naturais, e as gemas coloridas principalmente por vanádio são geralmente diamagnéticas (inertes). Quando a atração magnética é encontrada, a maior parte ou toda a atração pode ser devida à presença de ferro críptico (Fe3+). A única pedra preciosa natural que encontramos que é fortemente magnética devido ao vanádio é um exemplo raro de Turmalina Vanádio-dravita transparente.

Entre as gemas artificiais, as esmeraldas de laboratório, como a esmeralda sintética colorida por vanádio podem mostrar uma fraca atração magnética devido a um nível modesto de vanádio. Também há forte suscetibilidade magnética em zircônia cúbica colorida por uma alta concentração de vanádio.

O vanádio também pode causar a cor azul em algumas gemas, como Cavansite, Tanzanite (Zoisite) e Kornerupine azul. Vestígios de vanádio trivalente (V3+) em Corindo também demonstraram contribuir com a cor azul. O vanádio tetravalente (V4+) é conhecido por ser responsável pela cor azul na Cavansite, mas os estados de valência e/ou mecanismos de cor envolvendo o vanádio na Zoisite azul e na Kornerupine azul não são bem compreendidos. A Tanzanita é diamagnética. As respostas magnéticas fracas encontradas em Kornerupine azul e as respostas magnéticas moderadas em Canvansite são quase certamente devidas a outros metais além do vanádio.


COBALTO
O cobalto (Co) não é um metal naturalmente abundante na crosta terrestre. Como o ferro e o níquel, é ferromagnético (intensamente magnético) em seu estado fundamental não iônico. Os íons de cobalto (Co2+) no óxido de cobalto (Co3O4) são igualmente paramagnéticos como os íons de ferro, mas raramente são encontrados em gemas naturais e, principalmente, apenas em quantidades vestigiais. O cobalto é um cromóforo ainda mais forte que o cromo, capaz de criar cores em concentrações extremamente baixas.

Na maioria das vezes, encontramos cobalto em gemas sintéticas e imitações, como espinélio azul sintético, quartzo azul sintético e vidro azul, todos diamagnéticos. O espinélio azul sintético cultivado em fluxo e o YAG azul sintético podem ser fracamente magnéticos devido a uma concentração mais alta de cobalto. Mas as concentrações de cobalto encontradas na maioria das gemas naturais e sintéticas são muito baixas para serem detectadas com um ímã.

A maioria dos espinélios azuis naturais são coloridos principalmente por ferro (Fe2+), mas o cobalto (Co2+) também contribui para a cor azul em vários graus. As respostas magnéticas que vemos nos espinélios azuis naturais geralmente se devem inteiramente ao ferro. O raro Espenélio de Cobalto tem baixo teor de ferro e contém os mais altos níveis de cobalto de qualquer pedra preciosa natural. Sua fraca atração magnética possivelmente se deve principalmente ao cobalto. Três outros exemplos de cobalto que contribuem para a cor em pedras preciosas naturais são a rara Esfalerita verde (diamagnética), rosa cobalto calcita (fracamente magnética devido ao ferro) e rosa Smithsonita (fracamente magnética devido ao manganês).

Às vezes, o cobalto é usado em tratamentos de gemas para realçar a cor azul. O vidro de cobalto está sendo usado para preencher rachaduras em Safira azul e incolor de baixo grau, criando uma cor azul vibrante em gemas de Safira que, de outra forma, não teriam qualidade de gema. O cobalto também é usado na difusão superficial da Safira azul e, recentemente, na difusão profunda do Espinélio azul. É improvável que qualquer um desses tratamentos contribua para a suscetibilidade magnética detectável.


COBRE
Cobre (Cu) é um forte corante que ocasionalmente é encontrado em gemas, criando cores principalmente azul e verde. O cobre é inerte (diamagnético) como um metal nativo, como pode ser demonstrado quando aplicamos um ímã a um encaixe de tubo de cobre doméstico. Também diamagnética é a pedra preciosa vermelha Cuprita, que é ela própria um óxido de cobre (Cu2O) colorido por íons monovalentes de cobre cuproso (Cu1+).

No entanto, o cobre também pode fazer com que as pedras preciosas sejam paramagnéticas. Com uma mudança no estado de valência, o Cu2+ divalente (cobre cúprico) em concentrações relativamente altas dentro de minerais idiocromáticos pode criar atração magnética significativa. Esses íons de cobre são encontrados em sais de cobre e silicatos de cobre, e não em óxidos de cobre. Como exemplo, os cristais de sulfato de cobre (II) cultivados em laboratório (CuSO4) mostram uma atração magnética fraca a moderada para um ímã N52.

As gemas idiocromáticas magnéticas coloridas pelo cobre incluem Turquesa azul (fosfato de cobre), Azurita azul (carbonato de cobre), Malaquita verde (carbonato de cobre), Crisocola verde-azulada (silicato de cobre), Dioptase verde-azulada (silicato de cobre) e Boleita azul (cloreto de chumbo-prata-cobre), todos os quais mostram atração magnética do cobre. Devido à alta concentração de cobre em sua química nativa, a gema facetada da Dioptase mostra uma resposta de arrasto a uma varinha magnética.

Em alguns casos, os íons de cobre (Cu2+) dentro do óxido de cobre (II) (CuO) também conferem cor azul a gemas alocromáticas , como a rara Turmalina Paraíba e a rara Vesuvianita azul, ambas gemas transparentes coloridas por vestígios de impurezas de cobre. Mas as baixas concentrações de cobre nessas gemas alocromáticas resultam em suscetibilidade magnética muito baixa para ser detectada com uma varinha magnética. Uma pedra preciosa opaca colorida por íons de cobre (Cu2+) dentro do óxido de cobre (II) é Larimar, uma variedade azul clara do mineral Pectolita da República Dominicana. Os íons de cobre nessas gemas cabochão alocromáticas estão novamente em concentrações muito baixas para serem detectadas. Larimar é inerte (diamagnética).

Um exemplo raro de inclusões de cobre metálico sólido ocorrendo simultaneamente com íons de cobre dispersos em uma única gema é mostrado abaixo. Esta gema de Calcedônia da Bolívia contém inclusões visíveis relativamente grandes de cobre nativo que atingem a superfície e têm um brilho metálico acobreado. A cor azul do corpo da gema é derivada de íons de cobre (Cu2+) em solução sólida, provavelmente dentro de inclusões microscópicas de Crisocola dispersas por toda a Calcedônia. As inclusões pretas não são identificadas. Como esperado, esta gema alocromática é diamagnética.
metais que dão cor às pedras preciosas


Cobre nativo e cobre iônico na Calcedônia.

NÍQUEL
Níquel(Ni) é ferromagnético (intensamente magnético) como um metal nativo e é encontrado em conjunto com ferro em meteoritos de ferro-níquel. Os íons de níquel (Ni2+) dispersos em pedras preciosas são apenas fracamente paramagnéticos em comparação com o ferro, mas quando em altas concentrações podem causar fortes respostas magnéticas. Conhecemos apenas 3 gemas naturais que são coloridas principalmente por níquel. Estes são Crisoprásio, Prase Opal e Gaspéita. Crisoprásio é um tipo de Quartzo Calcedônia, e Prase Opal é uma rara Opala colorida por inclusões submicroscópicas de Crisoprásio. A Gaspéita é um raro mineral gema idiocromático contendo níquel e ferro. Todas as 3 gemas são de cor verde e todas são extraídas predominantemente na Austrália. Essas gemas mostram atração magnética fraca a forte devido a concentrações variáveis ​​de níquel (mais ferro em Gaspeita).


TITÂNIO
Titânio (Ti) por si só não causa cor ou resposta magnética em gemas naturais. Como um metal sólido, o titânio é fracamente magnético. Mas o titânio aparece principalmente em pedras preciosas como íons (Ti4+), que são apenas pouco paramagnéticos e não detectáveis ​​com um ímã em pedras naturais. Mesmo o Rutilo incolor sintético, composto inteiramente de íons de titânio e oxigênio, é diamagnético ou muito fracamente magnético.

A interação entre pequenas quantidades de íons de titânio e íons de ferro pode criar cores fortes em várias gemas por meio de um processo chamado transferência de carga de intervalo. Este processo químico envolvendo transferências de carga de elétrons de Fe2+ para Ti4+, bem como de Fe2+ para Fe3+, resulta nos ricos tons azuis de Safira (inerte a moderadamente magnético) e Cianita azul (inerte). O processo de transferência de carga de Fe2+ para Ti4+ também induz a coloração marrom escura na Turmalina Dravita (inerte). A transferência de carga de manganês (Mn2+) para titânio (Ti4+) contribui para a cor amarela em algumas turmalinas (resposta inerte ao arrasto). Qualquer atração magnética em gemas contendo titânio se deve à presença de ferro e/ou manganês, não ao titânio ou processos de transferência de carga envolvendo titânio.


Metais de terras raras e urânio também dão cores a algumas gemas.
Clica AQUI para saber mais (brevemente).


Informações mais detalhadas sobre as causas complexas da cor nas gemas podem ser encontradas no artigo de 1980 da Scientific American do Dr. Kurt Nassau, The Causes of Color, the Gems and Gemology, artigo de 1987 do Dr. Kurt Nassau.
Uma atualização sobre cores em gemas por Fritsch e Rossman, e na página da web CalTech do Dr. George Rossman, The Colors of Minerals.

Fontes:

Analisador FRX (XRF) para minerais e metais preciosos

Aplicação de Analizadores Portáteis de FRX
Os analizadores portáteis de FRX, analisam de forma rápida e precisa a composição elementar, de qualquer material em estado sólido (em campo) sendo muito usado na mineralogia (e não só).

Conheça os seus benefícios e como essa tecnologia é usada em análise de minerais.

Fluorescência FRX:
"método analítico para determinar a composição elementar de uma substância".
Niton™ XL2 XRF Analyzer
Niton™ XL2 XRF Analyzer

Analisador e testador de metais preciosos FRX (XRF)
Para testar ouro e outros metais preciosos em mineais e solos você pode usar um Analisador e Testador chamados de "espectrômetros XRF (X-ray fluorescence)", esta é uma solução um pouco mais cara e para profissionais que precisam de equipamentos no terreno, pois a maioria destes tipos de equipamentos são portáteis.
analisador FRX para minerais e metais preciosos
O sucesso do uso da FRX portátil irá depender da qualidade da amostragem.

FRX portáteis são também usados por ourives e joalheiros e igualmente empregados nas análises de sucatas eletrônicas em grandes empresas de reciclagens e ferro-velhos.

Como o FRX funciona
COMO FUNCIONA UM ANALISADOR FRX
A fluorescência de raios X por dispersão de energia é uma técnica analítica multi-elementar não destrutiva capaz de identificar elementos de vários materiais metálicos na qual a leitura para ouro será: Au  Lα1  0.1276
Platina: Pt  Lα1  0.1313
Prata: Ag  Kα1   0.05599
Nióbio: Nb  Kα1  0.07462
Manganês: Mn Kα1  0.2102
Ferro: Fe Kα1  0.1936

A fluorescência de raios X por dispersão de energia é uma técnica analítica multi-elementar não destrutiva capaz de identificar elementos com número atômico Z maior ou igual a 12, através dos raios X característicos Kα, Kβ ou Lα, Lβ dos elementos que estão presentes em uma amostra particular.
 
analisador de metais preciosos FRX
Analisador de metais preciosos FRX

Neste método, o material a ser analisado é atingido com um feixe de Raios X que interage com os átomos da amostra provocando a ionização das camadas mais internas dos átomos. O preenchimento das vacâncias resultantes, por elétrons mais periféricos, induz a emissão de raios X característicos dos elementos constituintes da amostra, semelhantemente ao que ocorre com o processo PIXE. A diferença entre os dois métodos está na fonte de excitação dos elementos da amostra, sendo utilizado um feixe de íons para a técnica PIXE e um tubo de Raios X ou fontes radioativas, emissoras de Raios X ou Gama, para a produção do feixe na técnica EDXRF.
O método EDXRF também é capaz de fornecer indicações das concentrações nos materiais analisados.

Com um analizador FRX as possibilidades de análise de materiais são infinitas.
ANALISE DE MATERIAIS POR FRX


Veja como funciona um analisador portátil FRX EXPLORER 5000, 
Skyray Instrument Inc.

Tutorial de início rápido do analisador DELTA XRF:


Marcas, modelos e onde comprar:
 A Olympus tem uma ampla gama de analisadores portáteis FRX´s:

 A ThermoFisher tem uma ampla gama de analisadores FRX:


Analisadores por XRF e XRD da Vanta by Olympus:

analisador de metais preciosos e minerais FRX
analisador de metais preciosos e minerais FRX


Analisador FRX, loja em Portugal:
(necessita de licenciamento na APA)

Analisador FRX, loja em França:



Analisador XRF portátil, lista de preços e outros modelos:


NOTA:
Você poderá encontrar analisadores FRX em outros sites como no AliExpress, porém a compra é por sua conta e risco uma vez que os produtos são de alto custo.

Faça "render o peixe":
Se você for comprar um produto caro como estes você deverá por em prática o que as companhias áreas fazem quando compram um avião, nunca os deixe parados.
Efetue serviços terceirizados para ourives, joalherias, mineradoras, central de reciclados ou particulares.


Aplicação do FRX na classificação de minérios:


Fontes:

Pesquisa por outros videos sobre FRX no YouTube:

Como saber o meu endereço de IP

Qual é o meu endereço de IP?
What's My IP Address?
¿Cuál es la ubicación de mi dirección IP?
#myIP
What's My IP Address?
Qual é a localização do meu endereço IP?
Encontre o seu endereço IP em um instante

Clica AQUI para saber qual é  seu IP.

Qual é o meu endereço de IP
O Live Traffic Feed vai fornecer o seu IPv6, que é a versão mais atual do Protocolo de Internet.

Endereço IP significa endereço de protocolo da Internet. É uma etiqueta numérica anexada a cada dispositivo que pode ser conectado a um dispositivo de computador ou usa o protocolo da Internet para fins de comunicação. Em termos simples, o endereço IP atua como um número de identificação para sua conexão de internet para sites para registrar e rastrear seu uso no site e para ver sua localização.

Estas são basicamente as duas únicas funções que um endereço IP executa:
Atua como um host ou interface de identificação de rede e,
ajuda no endereçamento de localização.
¿Cuál es la ubicación de mi dirección IP?
O endereço IP é necessário na maioria dos serviços de rastreamento cibernético e manter conhecido seu endereço IP exclusivo é uma boa tarefa.


Outros serviços para saber o seu IP-Internet Protocolo:

Como funciona um testador de diamantes

Diamante, um bom condutor
Existem dois tipos de condutividade nos Diamantes
condutividade térmica é uma medida de quão bem um material conduz o calor.
condutividade elétrica expressa o quão bem uma substância conduz eletricidade.
Diamond Selector II, by Culty Japan
Diamond Selector II, by Culty Japan

Um diamante tem os dois tipos de condutividade a térmica e a elétrica, e estas características é que podem ser usadas para ajudar a distingui-lo de outros materiais e identificar impurezas em um diamante genuíno.

O princípio dos Testadores de Diamantes, Diamond Selector é o de tirar proveito da capacidade térmica e elétrica do diamante para saber se o mesmo é de fato um diamante verdadeiro, seja ele um diamante bruto ou lapidado e cravado em uma jóia.
Diamond Selector III, by Culty Japan
Diamond Selector III, by Culty Japan

A alta condutividade térmica do diamante é usada por joalheiros e gemologistas que podem empregar uma sonda térmica eletrônica para distinguir os diamantes de suas imitações. Essas sondas consistem em um par de termistores alimentados por bateria montados em uma ponta de cobre fina.


Como funciona um testador de diamantes
diamond tester by presidium
Um termistor funciona como um dispositivo de aquecimento, enquanto o outro mede a temperatura da ponta de cobre: se uma pedra testada para um diamante, conseguir conduzir a energia térmica da ponta com rapidez suficiente para produzir uma queda mensurável de temperatura, ela será verdaeira.
Este teste leva cerca de 2 a 3 segundos.
No entanto, as sondas mais antigas serão enganadas pela moissanita, uma forma mineral cristalina de carboneto de silício introduzida em 1998 como uma alternativa aos diamantes, e  que tem uma condutividade térmica semelhante aos diamantes.

Diamantes, qualidades minerais únicas
A maioria dos diamantes são condutores térmicos extremamente eficientes, mas isolantes elétricos. O diamante conduz bem o calor como resultado das fortes ligações covalentes entre os átomos de carbono em um cristal de diamante. A condutividade térmica do diamante natural é de cerca de 22 W/(cm·K), o que torna o diamante cinco vezes melhor na condução de calor do que o cobre. A alta condutividade térmica pode ser usada para distinguir diamante de zircônia cúbica e vidro.
A Moissanite, que é uma forma cristalina de carboneto de silício que se assemelha ao diamante, tem uma condutividade térmica comparável. As sondas térmicas (diaomond tester) modernas podem diferenciar entre diamante e moissanita, à medida que a moissanita ganhou popularidade.

Condutividade elétrica dos diamantes
A resistividade elétrica da maioria dos diamantes é da ordem de 1011 a 1018 Ω·m.
A exceção é o diamante azul natural, que obtém sua cor a partir de impurezas de boro que também o tornam um semicondutor. Os diamantes sintéticos dopados com boro também são semicondutores do tipo p. O diamante dopado com boro pode se tornar um supercondutor quando resfriado abaixo de 4K. No entanto, certos diamantes azuis acinzentados naturais que contêm hidrogênio não são semicondutores.

Filmes de diamantes dopados com fósforo, produzidos por deposição química de vapor, são semicondutores do tipo n. As camadas alternadas dopadas com boro e com fósforo produzem junções p-n e podem ser usadas para produzir diodos emissores de luz ultravioleta (LEDs).
Junções de diodo pn e diodos emissores de luz UV (LEDs, em235 nm) foram capazes de deposição sequencial de camadas do tipo p (dopado com boro) e tipo n (dopado com fósforo). As propriedades eletrônicas do diamante também podem ser moduladas por engenharia deformação.

Condutividade térmica dos diamantes
Ao contrário da maioria dos isoladores elétricos, o diamante é um bom condutor de calor devido à forte ligação covalente e ao baixo espalhamento de fundos. A condutividade térmica do diamante natural foi medida em cerca de 2200 W/(m·K), que é cinco vezes mais do que a prata, o metal mais termicamente condutor.
Como o diamante tem uma condutância térmica elevada, ele já é usado na fabricação de semicondutores para evitar que o silício e outros materiais semicondutores sofram um superaquecimento.
Tecnologicamente, a alta condutividade térmica do diamante é usada para a remoção de calor eficiente em eletrônicos de alta potência. O diamante é especialmente atraente em situações onde a condutividade elétrica do material dissipador de calor não pode ser tolerada, por exemplo, para o gerenciamento térmico de micro-bobinas de radiofrequência (RF) de alta potência que são usadas para produzir campos de RF fortes e locais.

Diamond Selector III, by Culty Japan
Diamond Selector III, by Culty Japan.



Instruções de uso do testador de diamantes JEM-II GemVue
https://www.oficina70.com/como-usar-o-testador-de-diamantes-jem.html


Tenha mais informações e testes sobre diamantes clicando no link a seguir:

Fonte:

Teste da Lonsdaleita vs bola de alumina

Teste de Lonsdaleíta
(lonsdaleite test)
Teste da Lonsdaleita vs bola de alumina
Amostra analisada pelo Laboratório GIG em junho de 2020 e vendida como Lonsdaleite Diamond

Testar Lonsdaleíta
O Laboratório GIG-Gulf Institute of Gemology, recebeu de um cliente uma esfera quase redonda polida, branca e opaca, pesando cerca de 100 ct, para análise.
Mantendo a ética, o laboratório e a equipe nada perguntaram sobre o histórico da amostra antes do término dos testes realizados para identificar o material.
A equipe do laboratório realizou várias análises na amostra, desde as observações padrão, que podem ser observados na tabela 1 abaixo, até aplicações de mais alta tecnologia.
testar Lonsdaleita e bola de alta alumina

Particularmente, através do microscópio óptico, foi observado um conglomerado de estrutura de grãos muito pequenos.
Além disso, o cordão apresentou fluorescência incomum no teste da lâmpada de madeira (wood lamp, também é conhecido como teste de luz negra ou teste de luz ultravioleta): amarelo irregular com intensidade média nas ondas longas (365 nm) e azul farináceo médio nas ondas curtas (254 nm).
O teste da gravidade específica resultou em 3,53.
A composição química foi avaliada pelo ED-XRF e a distribuição relativa dos elementos é relatada na tabela 2 abaixo.
A alta concentração de Alumínio deve ser observada.
teste de Lonsdaleita e bola de alta alumina

As informações químicas foram integradas por análise micro-Raman. Esta técnica revela-se particularmente útil para identificar fases minerais, sem qualquer preparação de amostra. Graças ao microscópio óptico acoplado ao espectrofotômetro Raman, a fonte do instrumento foi focada em diferentes pontos da superfície da amostra e um espectro como o relatado na figura abaixo foi realizado.
teste de espectrofotômetro Raman
As bandas em 418 e 380 cm sem qualquer preparação de amostra.
Espectro Raman adquirido pelo espectrofotômetro Renishaw InVia, focando a fonte do laser do instrumento (514,5 nm) na superfície da amostra, na faixa entre 150 e 1800 cm-1.
espectrofotômetro Renishaw InVia
Espectrofotômetro Renishaw InVia

As bandas em 418 e 380 cm-1 observadas no espectro Raman são consistentes com aquelas relatadas para a fase mineral Coríndon.

Resultado final e conclusivo do laboratório gemológico:
Cruzando todos os dados adquiridos pelo laboratório, o diagnóstico final para a amostra resultou consistente com composto cerâmico de alumina.

Contacto com o cliente:
“Bola de alumina” ou “diamante Lonsdaleíta”?
teste de Lonsdaleita e bola de alta alumina
Para um laboratório gemológico, um dos momentos mais tristes é quando um material falsificado deve ser revelado ao cliente, principalmente se o laboratório for consultado para o serviço de laudo após a conclusão das transações e a compra do objeto.
A amostra do caso apresentada acima foi comprada como “diamante Lonsdaleita”.
Após esta descoberta, a equipe GIG (Gulf Institute of Gemology), decidiu examinar mais profundamente sobre a presença de Lonsdaleita no comércio de joias na região do Golfo. Pelo que sabemos, o número de amostras de lonsdaleíta, ou presumivelmente, não é muito alto, mas todas têm o mesmo aspecto: esfera branca redonda e quase redonda.
O que é particularmente interessante é a difusão online de vídeos que descrevem essas esferas como “diamantes lonsdaleíta”, “diamantes estrelas” ou “diamantes hexagonais”, suas características fascinantes e, em alguns casos, como distinguir entre “bolas de lonsdaleíta” e “bolas de alumina ”, usando sistemas do
 faça-você-mesmo (DIY).
Na verdade, a lonsdaleíta é uma fase extremamente rara, enquanto “bolas de alumina” são materiais muito comuns e relativamente baratos, sintetizados para fins industriais.

Portanto, a questão conseqüente é: pode a Lonsdaleita aparecer como uma esfera branca? Até onde sabemos, nenhuma referência científica de revisão por pares relata uma descrição de lonsdaleita consistente com uma esfera branca!

Esperamos ter o ajudado e esclarecido este assunto tão mau difundido na WEB.

Saiba mais sobre a Lonsdaleíta:

Esferas de alta alumina:

Lonsdaleita, saiba o porque de toda esta confusão:


Fontes:

Teste de níquel para meteoritos

Teste de Níquel para Identificar Meteoritos
Os meteoritos são uma fonte constante de admiração para a maioria das pessoas. Eles brilham no céu em seu breve período de existência, e por vezes penetram na superfície da terra. Para estas pequenas, ou grandes pedras que caem do céu, elas exercem um fascínio nas pessoas que querem ter algo vindo de fora de nosso planeta, mas em outros ​​aspectos eles são uma excelente fonte de informações para os cientistas.
kit para testar meteorito
Para os sortudos que buscam ou por sorte encontram um pedaço destas pedras vindas do espaço elas tem muito valor comercial, e o descobridor de um deles geralmente é bem recompensado.
The Maryborough Meteorite
O meteorito Maryborough encontrado por um garimpeiro de ouro, foi encontrado em Victoria em 1995 e está exposto no Museus Victoria na Austrália

Porém, nem sempre o que parece ser um meteorito, é, e alguns espécimes são constantemente rotulados como meteoritos.

Veja AQUI fotos de pedras que se parecem com meteoritos mas não são, eles são chamados de falsos meteoritos:

Mas as pessoas que encontram pode salvar-se de muitas falsas esperanças e decepções se
elas tivessem algum meio simples de testar o meteorito suspeito.
Hoje vamos explicar como fazer um simples teste de níquel que você pode fazer em casa.
Mas antes saiba que existem dois tipos gerais de meteoritos; aqueles compostos de ferro e níquel e conhecidos como meteoritos de ferro, e aqueles compostos por vários elementos e conhecidos como meteoritos rochosos.
Ambos os tipos geralmente têm pelo menos pequenas quantidades de níquel e um teste de níquel pode eliminar um grande número de objetos comumente confundidos com meteoritos.

Meteorito cortado e polido

Kit para testar meteoritos MeteoriteID
Compre um kit para meteoritos pronto para usar, informações no final deste artigo.

ATENÇÃO:
Este teste não é conclusivo em uma rocha terrestre que contenha níquel.
(consulte tabela de rochas que contenham níquel)


O teste requer 4 produtos químicos:
Ácido nítrico (diluído);
Hidróxido de amônio (amônia);
Álcool e
Dimetilglioxina.

Uma pequena amostra do material a ser testado é moída em um pó fino e dissolvida em ácido nítrico.
Então adicione hidróxido de amônio até a solução ficar nitidamente alcalina.
Um teste de alcalinidade é realizado usando papel de tornassol,
de preferência vermelho, e a cor mudará para azul quando for adicionado hidróxido de amônio.
Se um marrom avermelhado massa forma-se neste ponto, é uma indicação da presença de ferro.

Deixe a massa marrom avermelhada assentar e, em seguida, despeje cuidadosamente o líquido transparente. O líquido claro também pode ser filtrado do material sólido.

Enquanto o líquido está limpando ou filtrando, a solução de dimetilglioxina pode ser preparada.
Dissolva este produto químico em cerca de um grama de álcool até que o álcool não aguente mais. Esta é uma solução saturada. Adicione algumas gotas desta solução
para o líquido claro e um precipitado vermelho escarlate ou rosa indica a presença de níquel.

A presença de níquel na amostra indica que tem a possibilidade de ser um meteorito, e você pode então entrar em contato com alguma agência que possa ajudá-lo mais.
NOTA: "se a cor rosa desaparecer após 5 minutos, o metal contém Ni, mas não o suficiente para ser de origem meteorítica".

Se for para vender, então pague para ter um certificado do meteorito, é caro mas o valor de venda do meteorito vai fazer valer o valor do certificado.

No entanto,se não tiver níquel, você pode ter uma certeza razoável de que sua pedra não é, porém, consulte mais especialistas ou envie sua pedra para que sejam feitos testes laboratoriais. Isto poderá ocorrer de não se tratar de um meteorito e você gastar se dinheiro em vão.

ATENÇÃO:
Alguns destes produtos químicos são perigosos e
nocivo quando ingerido, inalado e absorvido pela pele.
Use sempre equipamentos de proteção, óculos , luvas e máscaras ou deixe isto para um profissional.

Onde vai encontrar os produtos químicos para o teste?
Dentre este, o ácido nítrico vai ser um pouco mais difícil de ser encontrado, uma vez que (puro) é controlado pelas forças de segurança, no entanto poderá eventualmente encontrar diluído em casas de produtos para agricultura.
Já o hidróxido de amônio poderá encontrar em lojas de produtos químicos.
A dimetilglioxina pode ser obtida em qualquer fornecedor de produtos químicos. Isto é um
químico seco, branco cristalino usada em química analítica para a determinação e quantificação de níquel.
O álcool pode ser comprado em quase qualquer lugar.
O papel de tornassol pode ser comprado em loja de produtos para agricultura e também em lojas de produtos para laboratórios.

No entanto se você não deseja correr riscos, poderá comprar um kit simples e mais seguro para testar suas pedras suspeitas de meteoritos.

KIT de Teste Para Meteoritos, MeteoriteID
Este kit é apenas uma primeira etapa na identificação do meteorito, após, testes laboratoriais adicionais validarão sua descoberta, podendo então requerer um certificado e laudo ao laboratório onde enviou a sua amostra.
MeteoriteID test your meteorite

Sites para comprar um kit de teste para meteorito pronto para usar:
https://www.amazon.com/Nickel-Meteorite-Testing-Solution
https://nonickel.com/products/meteorite-id


Mais informações sobre o KIT MeteoriteID AQUI


Tira de papel para teste de níquel- BRASIL
Nota: As tiras de Teste Rápido Indicador de Níquel vendidos por esta empresa não serve para testes de níquel em meteoritos.


Fontes:

Densidade relativa de rochas e minerais

Densidades relativa de rochas e dos minerais mais comuns
Densidade é uma medida da massa de uma substância por unidade de medida. Por exemplo, a densidade de um cubo de uma polegada de ferro é muito maior que a densidade de um cubo de uma polegada de algodão. Na maioria dos casos, objetos mais densos também são mais pesados.
Tirar a densidade de algum mineral é a forma mais prática de começar com uma possível identificação da pedra, isto se ela for bem executada.
As densidades de rochas e minerais são normalmente expressas como gravidade específica, que é a densidade da rocha em relação à densidade da água. Isso não é tão complexo quanto você imagina, porque a densidade da água é de 1 grama por centímetro cúbico ou 1 g/cm3. Portanto, esses números são traduzidos diretamente em g/cm3, ou toneladas por metro cúbico (t/m3).
O Ouro, um dos minerais mais pesados, tem uma densidade de 19,32.

Densidades das rochosas são úteis para engenheiros, é claro. Mas eles também são essenciais para os geofísicos que precisam modelar as rochas da crosta terrestre para cálculos da gravidade local.
Densidade relativa é frequentemente utilizado por geólogos e mineralogistas para ajudar a determinar o mineral conteúdo de uma rocha ou outra amostra. Gemólogos usam-na como uma ajuda na identificação de pedras.

Água da torneira ou água destilada?
Um fator importante para medir a densidade é a água.
Você acha que ao medir a gravidade específica com água da torneira você teria os mesmos resultados com que a água destilada ou da chuva?
Não use água da torneira porque a densidade ou gravidade específica desta não é constante e é sempre maior que a água destilada.
A água da torneira contém minerais, ao contrário da água destilada, mas este não é um fator determinante a ser levado por colectores de minerais, gemologistas usam água destilada ou outros tipos de líquidos como o Tolueno, assim eles podem obter resultados mais precisos porque a tensão superficial é muito menor que a da água, no entanto, tolueno além de tóxico pode danificar gemas delicadas ou porosas, como pérolas e turquesa.
Então, recomendamos uma medição em água destilada para valores mais precisos.

O aparelho para realizar essas medições é a Balança Hidrostática ou então faça você mesmo uma simples balança e de forma barata com materiais que você tem em casa.
SPECIFIC GRAVITY KIT
Balança Hidrostática Mineralab

      Clica no link a seguir veja como fazer uma balança para medir densidade de minerais:

Densidades minerais
Como regra geral, os minerais não metálicos têm baixas densidades, enquanto os minerais metálicos têm altas densidades. A maioria dos principais minerais formadores de rochas da crosta terrestre, como quartzo, feldspato e calcita, possui densidades muito semelhantes (em torno de 2,6 a 3,0 g/cm3). Alguns dos minerais metálicos mais pesados, como irídio e platina, podem ter densidades tão altas quanto 20.

Densidade de algumas pedras preciosas e metais:
Apatita - 3.1-3.2
Biotita Mica - 2.8-3.4
Calcita - 2,71
Caulinita - 2.6
Clorito - 2.6-3.3
Cobre - 8.9
Diamante - 3.5–3.53
Esfalerita - 3.9-4.1
Feldspato - 2,55–2,76
Fluorita - 3.18
Granada - 3.5-4.3
Grafite - 2.23
Halita - 2.16
Hematita - 5.26
Hornblenda - 2.9-3.4
Irídio - 22.42
Magnetita - 5.18
Olivina - 3,27-4,27
Ouro - 19,32
Pirita - 5.02
Quartzo - 2.65
Talco - 2.7-2.8
Turmalina - 3.02–3.2

Densidades de rochas
A densidade das rochas é muito sensível aos minerais que compõem um determinado tipo de rocha. Rochas sedimentares (e granitos), ricas em quartzo e feldspato, tendem a ser menos densas que as rochas vulcânicas. E se você conhece sua petrologia ígnea, verá que quanto mais máfica (rica em magnésio e ferro) uma rocha é, maior sua densidade.

Densidade das rochas:
Andesita - 2.5–2.8
Ardósia - 2.7-2.8
Arenito - 2.2–2.8
Basalto - 2.8-3.0
Calcário - 2.3-2.7
Carvão - 1.1-1.4
Diabase - 2.6-3.0
Diorite - 2.8-3.0
Dolomita - 2.8–2.9
Gabbro - 2.7-3.3
Gnaisse - 2.6–2.9
Granito - 2.6-2.7
Gesso - 2.3-2.8
Mármore - 2.4-2.7
Mica xisto - 2.5–2.9
Peridotita - 3.1-3.4
Quartzito - 2.6-2.8
Riolito - 2,4-2,6
Sal-gema - 2.5-2.6
Xisto - 2.4–2.8

Como você pode ver, rochas do mesmo tipo podem ter uma variedade de densidades. Isto se deve em parte a diferentes rochas do mesmo tipo que contêm proporções diferentes de minerais. O granito, por exemplo, pode ter um conteúdo de quartzo entre 20% e 60%.

Porosidade e densidade
Essa faixa de densidades também pode ser atribuída à porosidade de uma rocha (a quantidade de espaço aberto entre grãos minerais). Isso é medido como um decimal entre 0 e 1 ou como uma porcentagem. Em rochas cristalinas como o granito, que possuem grãos minerais estreitos e entrelaçados, a porosidade é normalmente bastante baixa (menos de 1%). No outro extremo do espectro está o arenito, com seus grandes grãos de areia individuais. Sua porosidade pode chegar de 10 a 35%.

A porosidade do arenito é de particular importância na geologia do petróleo. Muitas pessoas pensam nos reservatórios de petróleo como piscinas ou lagos de petróleo no subsolo, semelhantes a um aqüífero confinado que retém água, mas isso está incorreto. Os reservatórios estão localizados em arenito poroso e permeável, onde a rocha se comporta como uma esponja, mantendo óleo entre seus espaços porosos.

Tabela de densidade dos minerais, pedras e metais preciosos:


Onde comprar a Balança Hidrostática:

Fontes: